空孔配置によるトンネル発破振動低減効果の検討

新潟大学大学院自然科学研究科 (株) 福田組

学生員 齋藤 正会員 若月和人

新潟大学工学部建設学科

正会員 阿部 和久

新潟大学大学院自然科学研究科

正会員 紅露 一實

1. はじめに

トンネルの発破掘削を民家等に近接して行う場合,発破 振動を低減して構造物や住民への影響を最小限に抑える必 要がある.一般的には1孔あたりの総薬量を低減するなど で振動低減を図るが、特に制約が厳しい場合、波動の伝播 を遮断するために,掘削面の外周に沿ってスリット(自由面) を形成させて大幅に振動を低減させることがある1).ただし この場合、スリットの形成に特殊な工法が必要であると共 に,掘削効率の低下や施工コストの増大が問題となる.

一方,周期構造内の波動場に,如何なる周波数において も波動モードを持たない周波数帯(ストップバンド)が存在 し得ることが知られており、この特性を利用することで波 動の透過性や遮蔽性を制御することができる、既往の研究 2)では,周期場のバンド特性を利用することで,十分な遮蔽 性能が得られることが示されている.

また、円形領域に対してバンド特性を適用した例として ホーリーファイバがある、これは「コア」と呼ばれる心線 を「空孔」を設けた「グラッド」と呼ばれる周期素材で包ん だ構造で与えられ,光の反射率を向上させ,従来の光ファ イバに比べはるかに高い光の保持率を可能にしている.

本研究では,ホーリーファイバのように,多数の空孔を 掘削面に配置することによる,発破振動低減の可能性につ いて検討する.

2. 空孔域を有する無限場の加振応答解析

(1) 対象とする問題

トンネルを発破によって掘削していく場合, 掘削面に対 して垂直に発破孔が設けられる.掘削面外周近傍に図1の ように空孔を配置する場合を考える、解析では,均質な二 次元無限場の中に Γ_3 で囲まれた有限領域をとり, 孔の配置 された領域を含む Γ_3 内側の領域を Ω_2 とおく . Ω_2 内で加 振力が加わる無限小の円孔(発破孔)を含む要素を Ω_e , その 境界を Γ_1 とおく. なお , Γ_3 の外部は , Ω_2 の均質域と同一 材料で与えられているものとする.

(2) 求解方程式の導出

 $\Omega_2 - \Omega_e$ における運動方程式は次式で与えられる.

$$\begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} & \mathbf{K}_{13} \\ \mathbf{K}_{21} & \mathbf{K}_{22} & \mathbf{K}_{23} \\ \mathbf{K}_{31} & \mathbf{K}_{32} & \mathbf{K}_{33} + \mathbf{K}_{B} \end{bmatrix} \begin{Bmatrix} \mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \mathbf{u}_{3} \end{Bmatrix} = \begin{Bmatrix} \mathbf{F}_{1} \\ \mathbf{0} \\ \mathbf{0} \end{Bmatrix}$$
(1)

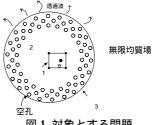


図1 対象とする問題

ここで \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 は,それぞれ Γ_1 Ω_2 Γ_3 上における節点 変位 , \mathbf{F}_1 は Γ_1 上の節点力 , \mathbf{K}_B は Γ_3 上の外部インピーダ ンス行列である 3). Γ_1 において , Ω_e 側の節点変位と節点力 は次式で与えられる.

$$\mathbf{u}_e = \mathbf{u}_1^I + \mathbf{u}_1^S , \mathbf{F}_e = \mathbf{F}_1^I + \mathbf{F}_1^S$$
 (2)

ここで, \mathbf{u}_{1}^{I} は円孔加振で放射される波動の Γ_{1} 上での節点 変位, \mathbf{F}^I はその応力から与えられる内部節点力である.ま た, \mathbf{u}_1^S , \mathbf{F}_1^S は Ω_2 側からの散乱波成分である. Γ_1 上の変 位の適合条件と力のつり合い条件は次式で与えられる、

$$\mathbf{u}_1 = \mathbf{u}_1^I + \mathbf{u}_1^S, \mathbf{F}_1 + \mathbf{F}_1^I + \mathbf{F}_1^S = \mathbf{0}$$
 (3)

なお, \mathbf{u}_1^S , \mathbf{F}_1^S は Ω_e 内に外力加振を受けない成分であるの で,次式が成り立つ.

$$\left[\tilde{\mathbf{K}}_{11}\right]\left\{\mathbf{u}_{1}^{S}\right\} = \left\{\mathbf{F}_{1}^{S}\right\} \tag{4}$$

ここで, $ilde{\mathbf{K}}_{11}$ は $\Omega_e+\Gamma_1$ に対する動的要素剛性行列である. 以上の式を整理すると、 F_1 は次式の様に表わせる.

$$\mathbf{F}_{1} = \left[\tilde{\mathbf{K}}_{11}\right] \left\{ -\mathbf{u}_{1} + \mathbf{u}_{1}^{I} \right\} - \left\{ \mathbf{F}_{1}^{I} \right\} \tag{5}$$

式(5)を(1)に代入して最終的な求解方程式を得る.

 Γ_3 からの放射波動エネルギーの時間平均 $ar{\mathbf{E}}_R$ は次式によ り求める.

$$\bar{\mathbf{E}}_R = \frac{\omega}{2} \mathrm{Im}(\mathbf{u}_3^* \mathbf{K}_{\mathrm{B}} \mathbf{u}_3) \tag{6}$$

ここで,()* は共役転置を表す.

3. 解析

(1) 分散解析

格子間隔 L=0.50m で直径 0.20m の空孔を三角形ハニカム 状に周期的に配置した場合の(a)分散曲線と,(b)ハニカム 状配置における第 1Brillouin ゾーンを図 2 に示す.

Key Words: トンネル発破,振動低減,空孔配置

連絡先: 950-2181 新潟市西区五十嵐二の町 8050 番地 TEL 025 (262) 7028 FAX 025 (262) 7021

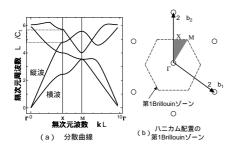


図2 ハニカム状配置の分散曲線と第 1Brillouin ゾーン

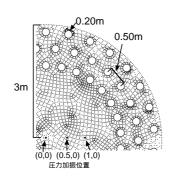


図 3 解析領域 (1/4 部分)

なおここで用いられている周波数 $(L\omega/C_t)$ および波数 (kL)は地盤の横波伝播速度 C_t と格子間隔 L により無次元化さ れたものである.この時の解析波数領域は,逆格子空間に おける三角形 Γ -X-M- Γ 上となる . 完全なストップバンドは 存在しないが, Γ-X の波数区間において点線で囲まれた周 波数域で縦波モードが存在しないことが確認できる.

(2) 加振問題の解析条件

解析領域は,無限場内におかれた半径3mの円形領域と する.図3の様に要素分割し,空孔は3層の三角形ハニカ ム状に配置する.無次元周波数0~6までの範囲で図中の発 破孔位置にパルス波を入力し,以下のエネルギー透過比Eを求める.

空孔がある場合のエネルギー透過率 空孔がない場合のエネルギー透過率

(3) 解析結果

図 4 に圧力加振位置を (0,0) , (0.5,0) , (1,0)m と設定した 場合の解析結果を示す.横軸に無次元周波数,縦軸はエネ ルギー透過比 E , 太枠で囲まれた範囲が分散曲線の Γ -X の 波数領域で縦波の存在しない周波数帯を表わしている.こ の周波数帯でエネルギー透過比が減少していることがわか る.圧力加振位置を中心からずらしていくにつれて,エネ ルギー透過比が高くなっている.これは空孔域に対する波 の入射角度が変化していき,図2の分散曲線のX-M, $M-\Gamma$ の縦波モードが存在しうる波数ベクトル方向の波動が入射 したためと考えられる. 本解析では、上記解析条件以外に も, 空孔の直径, 格子間隔, 層数を変化させ, さらに直交格子 でも解析を行った。その結果、上に示したケースと同様の傾

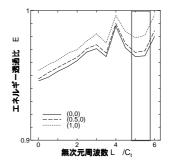


図4 エネルギー透過比

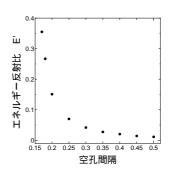


図 5 エネルギー反射比

向が確認された。なおエネルギー透過比は、空孔の直径の拡 張,格子間隔の縮小,層数の増加により低減されることがわ かった また,無次元周波数が0~3の範囲では,伝播波動 モードが存在するものの,エネルギー透過比が低減してい る.これは,空孔を設けた範囲の見かけの剛性が低下した 影響と考えられ本手法の有用性が確認できる.

無次元周波数が0~3の範囲の低減効果に注目し,空孔 間隔を小さくしていったときの解析結果を示す,空孔配置 は,直径 0.15m で2層のハニカム配置とする.空孔間隔が 0.50m から 0.17m までにおける結果を図 5 に示す. 横軸に 空孔間隔 , 縦軸に反射したエネルギー比 $E^{'}=1-E$ をと リ , プロット点は各間隔における無次元周波数 $L\omega/C_t \rightarrow 0$ の値である.図より,空孔間隔を小さくしていくことで,反 射するエネルギーが急増していることがわかる、またこの 傾向は,1層でも確認することができ,空隙率が反射(透過) エネルギーの増減に関係することがわかる.

本解析結果から,空孔を周期的に配置することで,ストッ プバンドと空孔域の見かけの剛性低下によりパルス波の透 過をある程度低減し得ることが確認できた、有意な低減効 果を得るためには密な空孔配置が必要ではあるが、波動透 過の観点から本振動低減法の特性を検討することができた.

参考文献

- 野間達也,土屋敏郎:外周スリットと電子雷管を用いた制御発 破の試験施工, 土木学会第 55 回年次学術講演解講演概要集, VI-67, pp.134-135, 2000.
- 阿部和久,中山 悠,紅露 寛 中間層を有する周期複合材の
- 弾性波動解析、応用力学論文集、Vol.13、pp.1041-1048、2010. 阿部和久、本間広紀、紅露一寛:一部に欠陥を有する二次元 周期場の動弾性解析、土木学会論文集 A2(応用力学)、Vol.68 土木学会論文集 A 2(応用力学) , Vol.68 , No.2, I_823-I_831, 2012.