メタヒューリスティックに基づく材料パラメータ同定手法とその性能評価

東北大学大学院工学研究科	学生会員	〇太田 勇真,
東北大学災害科学国際研究所	正会員	森口 周二,
東北大学災害科学国際研究所	正会員	高瀬 慎介,

1. 序論

一般に個々の材料パラメータは、規格に従った材料実験 によって決定される.しかし、材料によっては実験が困難な 場合が多いため、近年ではコンピューター上の仮想数値実 験を行った上で、最適化アルゴリズムを活用し、その材料 パラメータを同定する、いわゆる '数値材料試験'によるパ ラメータ同定を行う試みが増えている.しかし、複合材料 でしかも材料の非線形性を考慮するような場合には、計算 コストの増加のみならず、同定すべきパラメータの数が増 加し、それに起因して同定精度の悪化を招くことが問題視 されている. そのため、本研究では、収束速度と解の精度 に関して優れた性能を示す, Particle Swarm Optimization¹⁾ および Differential Evolution²⁾(以下, PSO と DE に略) と 呼ばれる最適化アルゴリズムを個別に実装し、両者の比較 検証を実施するとともに,数値材料試験への適応性に関す る検討を行う.

2. メタヒューリスティックに基づく材料パラメー タ手法

本研究で用いた最適化アルゴリズムは、メタヒューリス ティックの考えに基づいている. メタヒューリスティックと は、最適化問題を解くための経験的手法(ヒューリスティッ クス)を有機的に結合させたものである.本研究では材料 パラメータ同定手法として PSO と DE に着目する. PSO お よび DE は最適化問題における最適解探索アルゴリズムで あり, 例えば最近では構造工学分野の離散的な最適設計法 や経済分析などに応用する研究もみられ、その適用範囲は 幅広い. この2つの探索アルゴリズムは両者ともに逆解析 を基にした順序を経て設計変数の値を決定する.参考のた め、2つのアルゴリズムのフローチャートを図-1に示した.

(1) **PSO**

PSO は粒子群最適化と呼ばれ、「生物が群れを成して行動 (探索) する方が一個体で行動するよりも高い知能を発揮す る」という生物学的見解を行動理論として工学的にモデル 3. 材料パラメータ同定 化したアルゴリズムである. 各粒子はパラメータ空間内の (1) 問題設定 位置ベクトルとして表され、スカラー量である評価値がそ れに対応する. 各粒子は群の全粒子中で最小誤差関数値を 材料パラメータを同定する場合と, (b) 梁の3点曲げ試験に 持った位置(最良位置)と自分自身の中で最小の誤差関数 より得られた均質体の時間 - 変位曲線に対して、その実験

図-1 PSOとDEのフローチャート

値を持った位置に引き寄せられるようにパラメータ空間内 を探索する. その結果, パラメータが最適値に収束してい く.

(2) **DE**

DE は集団を形成した各個体から突然変異(Mutation), 交叉 (Crossover), そして選択 (Selection) を経て, 新しい 粒子を生成し、新しい粒子と現世代の評価の良い方を次世 代に残していく進化的戦略手法である. 突然変異や交叉な ど、同じ進化的戦略手法の GA (Genetic Algorithum・遺伝 的アルゴリズム)に類似した部分もあるが、DEはGAと比 べてシンプルなアルゴリズムであり、かつ高性能であると 言われている. 突然変異を生成するための突然変異係数と 差分ベクトルによって、設定範囲を幅広く探索でき、PSO などに比べ局所解に陥りにくいという特徴を持つ.

本研究では、各粒子を評価する際に式(1)の評価関数を 用いた、この式から求めた評価関数値により、最適化アル ゴリズム内で各粒子を評価している.

$$E_{k} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} \frac{1}{(\hat{\sigma}_{i})^{2}} (\hat{\sigma}_{i} - \sigma_{i})^{2}}$$
(1)

本研究では、(a) 非均質材料の応力 - ひずみ曲線を用いて

キーワード: PSO, DE, Hill 異方性弾塑性, Voce 硬化則, クリープ, 数値材料試験 〒 980-8579 仙台市青葉区荒巻字青葉 6-6-06, TEL 022-795-7425, FAX 022-795-7423

の有限要素法解析の結果が合致するように同定する場合の 2つのパラメータ同定に関して検証を行った.

同定対象 (a) で使用する材料モデルは,Hill 異方性弾塑性モ デルである.同定対象のパラメータは,異方性Hill テンソル におけるそれぞれの方向の初期降伏応力 $\sigma_{xx}^{Y}, \sigma_{yy}^{Y}, \dots, \tau_{xx}^{Y}$ および式 (2) にある降伏関数 $\sigma_{y}(\alpha)$ (Voce 硬化則)内の *H*, α , R_{0}, β の合計 10 個である.ここで, α は蓄積塑性ひず みである.

$$\sigma_{y}(\alpha) = \sigma_{y0} + H\alpha + R_0 (1 - \exp(-\beta\alpha))$$
(2)

異方性弾塑性モデルでは、同定対象のパラメータが多く 局所解が多数存在し、局所解に陥りやすい.また、同定対 象のパラメータが未知であり、探索範囲を設定することが 難しい.これらの課題を解決するため、同定手法には大き な探索範囲が設定可能であり、かつ局所解に陥らないとい う性能が求められる.

同定対象 (b) で使用する材料パラメータは, クリープモ デルである.本研究における同定対象のパラメータは, ヤ ング率 E と式 (3) のクリープひずみ速度内の C₁, C₂, C₃, C₄ の合計 5 つである.

$$\dot{\varepsilon}^{c} = C_1 \sigma^{C_2} t^{C_3} \exp\left(-\frac{C_4}{T}\right) \tag{3}$$

この材料パラメータ同定では、有限要素法を用いて時間 - 変位曲線を求めるため計算に膨大な時間がかかる. そのた め、少ない反復計算回数で最適解を求められる同定手法が 望ましい.

(2) 性能の比較・検証

図-2 同定 (a) の結果: 異方性弾塑性モデルにおける実験値と同定 曲線の応力 - ひずみ関係

図-2 と図-3 は、同定 (a), (b) についてのそれぞれの実験 データにフィッティングした結果の一例である.これらの図

図-3 同定 (b) の結果:等方性クリープモデルにおける実験値と同 定曲線の時間-変位関係

の実験データと同定曲線の誤差は、式(1)で求めた値により評価する.

また、同定(a)については、同定終了時に一番評価の高い パラメータ組の評価関数値を、最良近似関数値として記録 した結果を図-4に示す.この結果は、異方性弾塑性モデル を探索範囲を大きくとって100回同定した結果であり、最 良評価関数値が1.0×10⁻³より小さくなったものを同定成 功とみなしている.探索範囲が大きいと局所解を多く含む ため、パラメータ同定が非常に難しい.この結果を見ると、 DE の方が成功率が高いことがわかる.

図-4 同定 (a) の結果: 反復計算回数 2000 回における同定試行回数と最良近似関数値 (成功率 PSO13 %, DE38 %)

4. 結論

本研究では、材料パラメータ同定のために PSO と DE の 最適化アルゴリズムを比較・検証した.その結果,PSO は 最適解までの収束が DE よりも速い反面、局所解に陥りや すい特徴がある.一方、DE は局所解に陥りにくい汎用性の 高い同定手法であることがわかった.

今後の課題は, PSO と DE をハイブリット化し両者の長 所を活かした新しいパラメータ同定手法を提案することで ある.

参考文献

- J. Kennedy and R. C. Eberhart, "Particle swarm optimization", Proc. IEEE International Conference on Neural Networks, IV, pp. 1942 -1948, 1995
- R. Storn and K. Price, "Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces", Journal of Global Optimization, pp. 341-359, 1997