内角鋼管と外円鋼管からなる二重鋼管・コンクリート合成部材の圧縮実験

神戸市立工業高等専門学校 学生員〇清水 集平 正会員 上中宏二郎,酒造敏廣

1. はじめに

二重鋼管・コンクリート合成部材(以下, CFDST)と は, 直径が異なる二つの鋼管を同心円上に配置し, 両 鋼管の間にコンクリートを充填した構造形式である. このような構造により,従来のコンクリート充填鋼管 (CFT)構造¹⁾と比較して軽量となる利点を有する.

これまでに著者らは、内外円形鋼管を有する CFDST(以下CC-CFDST)の中心圧縮実験²⁾,純曲げ 実験³⁾,三点対称曲げせん断実験⁴⁾,逆対称二点曲げ載 荷実験⁵⁾の一連の研究を継続的に行ってきた.そこで、 本研究は、既報²⁾に引き続き、外円形鋼管と内角形鋼 管のCFDST(以下,CS-CFDSTとする。図-1参照)の中 心圧縮実験を行い、内外の鋼管幅比(*B/D*)が同特性に与 える影響について検討することを目的とする.

2. 供試体の概要と測定項目

供試体一覧を表-1に示す.供試体は,鋼管厚 t_o, t_i= 1.0, 1.6, 2.3mm, ならびに内鋼管 B= 27, 53 ならびに 80mmの組み合わせの CS-CFDST 供試体 9 体に,鋼管厚 (t_o)が上記 3 種の CFT 供試体 3 体を加えた合計 12 体で ある.実験変数は,径厚比(D_o/t_o),ならびに内鋼管・ 外鋼管幅比(B/D_o)である.つぎに,図-2 に載荷風景を 示す.三台の変位計を供試体上部に配置し,載荷軸方 向変位(*ð*)を測定した.さらに,内外鋼管外側の南北方 向に二軸ひずみゲージを計四箇所貼付し,両鋼管の二 軸応力状態を測定した.

実験結果と考察

3.1 破壊形式

写真-1に破壊形式を示す. cs10-27をはじめとした9 体の供試体では、従来のCFTの破壊形式と同様なせん 断破壊とそれによる局部座屈が見られた. しかしなが ら、cs10-53 および cs10-80 では、載荷点近傍が潰れて しまう局部座屈 (Elephant-foot type)を確認することがで きた. 一方で、cs23-80の破壊形式は、せん断が確認さ

Keyword: CFT, CFDST, inner-to-outer width ratio, axially loading capacity 連絡先:〒651-2194 神戸市西区学園東町8丁目3番地 神戸市立工業高等専門学校 TEL:078-795-3269

CS3-019

表-1 供試体一覧と実験結果

No.	Tag	t (mm)	D(mm)	$B(\mathrm{mm})$	D/t	B/D	fy (N/mm ²)	f^{c} '(N/mm ²)	N^{u} (kN)	N est (kN)	Nu /Nest
1	cs10-00	1.0	— — — 160.0	0.0	160.0	0.00	201	36.5	964.3	784.3	1.23
2	cs10-27	1.0		27.0	160.0	0.17	199	32.3	932.0	696.5	1.34
3	cs10-53	1.0		53.0	160.0	0.33	199	32.3	624.3	650.1	0.96
4	cs10-80	1.0		80.0	160.0	0.50	199	32.3	330.3	555.6	0.59
5	cs16-00	1.6		0.0	100.0	0.00	245	36.5	1213.2	831.7	1.46
6	cs16-27	1.6		27.0	100.0	0.17	278	32.3	1116.2	782.3	1.43
7	cs16-53	1.6		53.0	100.0	0.33	278	32.3	1188.7	761.4	1.56
8	cs16-80	1.6		80.0	100.0	0.50	278	32.3	795.8	693.5	1.15
9	cs23-00	2.3		0.0	69.6	0.00	253	36.5	1385.7	879.2	1.58
10	cs23-27	2.3		27.0	69.6	0.17	345	32.3	1534.7	902.2	1.70
11	cs23-53	2.3		53.0	69.6	0.33	345	32.3	1504.3	917.5	1.64
12	cs23-80	2.3		80.0	69.6	0.50	345	32.3	726.2	887.2	0.82

れず局部座屈のみが見られた.

3.2 中心圧縮強度

図-3 に内外鋼管幅比(*B*/*D*₀)と定式化した強度比(*N*_u /*N*_{est})の関係を示す.縦軸の*N*_{est}は鋼管の拘束効果を考慮しない CFDST の中心圧縮強度であり,式(1)の通りに表される.

$$N_{est} = (A_{si} + A_{so}) \cdot f_y + A_c \cdot f_c' \tag{1}$$

ここで、 A_{si} , A_{so} , A_c : 内外鋼管およびコンクリートの 断面積、 f_y : 鋼材の降伏強度、 f_c' : コンクリートの圧縮強 度である. 図-3 より、局部座屈を呈した供試体では、 N_u/N_{est} が低下していることがわかる. これは、算定強 度 N_{est} が、鋼管の降伏応力を基準としたためであると 考えられる.

3.3 二軸応力

図-4に貼付した二軸ひずみゲージより求めた外鋼管 の弾塑性応力状態を示す.ここで、 σ_{e} 、 σ_{θ} は鋼管の軸 方向、周方向応力である.同図より、充填コンクリー トのダイレイタンシーの影響により、二軸応力が降伏 曲面に到達後、周方向応力(σ_{θ})が引張方向へと流動し た.この挙動は内鋼管でも同様であった.

4. まとめ

- (1)cs10-53, cs10-80, cs23-80の破壊形式は鋼管の局部 座屈であった. その他の破壊形式はコンクリートの せん断破壊とそれに伴う局部座屈であった.
- (2)局部座屈が発生した供試体(cs10-53, cs10-80, cs23-80)では,強度比(N_u/N_{est})が低下した.
- (3)CFT, CFDST 問わず,全ての供試体において内外鋼 管の降伏曲面降伏後の周方向の応力(σ_θ)は,引張方 向に流動した.

図-4 外鋼管の応力状態

参考文献

1)日本建築学会:コンクリート充填鋼管構造設計施工指針, 2008. 2)Uenaka,K. et al: *Thin-Walled Structures*, Elsevier, 48(1), 19-24, 2010. 3)Uenaka, K. et al: *Steel & Composite Structures*, Techno-Press, 8(4), 297-312, 2008. 4)Uenaka, K. et al: *Thin-Walled Structures*, Elsevier, 49(2), 256-263, 2011. 5)Uenaka, K.: *Thin-Walled Structures*, Elsevier, 70, 33-38, 2013.