コンクリート充填楕円鋼管部材の純曲げ挙動

神戸市立工業高等専門学校 学生会員〇山本 貴大 神戸市立工業高等専門学校 学生会員 吉谷 康佑 神戸市立工業高等専門学校 正 会 員 上中宏二郎 大阪市立大学院工学研究科 正 会 員 角掛 久雄

1. はじめに

コンクリート充填楕円鋼管部材(Concrete Filled Elliptical Steel Tubular Members, 以下, CFEST とする)とは楕円鋼管 にコンクリートを充填した新しいタイプの鋼管の鋼管構造であり,従来の高靭性,高耐久性を有するコンクリート 充填鋼材部材(Concrete Filled Steel Tubular Members, 以下, CFT とする)に類似した形状を有する. CFEST を河川内 の橋脚に用いれば,水流をなめらかにすることができるため,洗掘の問題が軽減できると考えられる.

このような背景をもとに、本研究では、比較的大きな径厚比(69<2a/t<160)を有する6体のCFESTと直径が160, 80mmの6体のCFTを加えた合計12体で曲げ特性に関する基礎実験を行った.さらに、径厚比(2a/t)が曲げ強度に 与える影響について考察した.

2. 実験方法

表-1 に供試体一覧を示す.供試体は2種類の鋼管半径 a=80mm ならびに b=40mm(a/b=2.0)と固定し,鋼管厚(t)を1.0,1.6 および2.3mm としている.従って,本試験の径厚比(2a/t)は69~160となる(供試体の外形は図-1参照).

載荷方法は、図-2に示すように、作成された供試体 の添接板に載荷治具をボルトで固定し、500kN耐圧試 験機を用いて載荷はりに荷重を加え、左右対称に4点 曲げ載荷することにより、供試体に一定の曲げモーメ ントを作用させた.

測定項目は、供試体高さ方向中心部の東西南北方向 に2軸ひずみゲージを4個所貼付し鋼管に作用する応 力を測定した.また、変位計を供試体中央と80mm離 れた左右対称の位置に設置し、変形特性を測定した.

3. 実験結果と考察

(1) 破壊形式

全ての供試体において終局状態に到達すると,曲げ 圧縮による鋼管の局部座屈が発生した後,曲げ引張に よる鋼管のひび割れが見られた.なお,今回の実験に おいて径厚比(2a/t)が破壊形式の差異に及ぼす影響は 見られなかった.

(2) 純曲げ強度

表-1 に実験結果一覧を示す. ここで, *M*_u: 算定曲げ 強度, *M*_{exp}: 純曲げ強度, *M*_{exp}/*M*_u: 相対比を表す.

図-1 コンクリート充填楕円鋼管部材 (CFEST)

図-2 載荷方法

用いて,以下の式より求めた.

 $M_{exp} = \frac{2}{3} k f_c' a b (b+t) cos^3 \alpha$ + $\frac{2}{3} f_y t \{ t^2 - (2b+a)t + (2ab+b^2) \} cos^3 \alpha$ また, **図-3** に算定強度と純曲げ強度の関係を示す. 図中の破線は, CFEST と CFT の原点を通る直線近似を 示す. 図より, M_u =2.67 M_{exp} とすれば, 概ね評価できる.

キーワード: CFEST, CFT, 径厚比, 四点対称曲げ載荷, 純曲げ強度, 二軸応力 連絡先: 〒651-2194 神戸市西区学園東町8丁目3番地 神戸市立工業高等専門学校 TEL: 078-795-3269

-35-

CS3-018

表-1 供試体一覧と実験結果

	Elliptical steel tube							Conc.	Experimental results		
Tag	Thick.	Dimeter		Ratio		fy	fu	strength	M_{u}	M_{exp}	M/M
	$t (\mathrm{mm})$	2a(mm)	2b(mm)	2a/t	2b/t	(N/mm ²)	(N/mm^2)	$f_c'(\text{N/mm}^2)$	(kN m)	(kN m)	w exp/w u
10-major	1.0	160	80	160.0	80.0	196	345.4	 37.9	2.56	10.77	4.21
10-minor	1.0	160	80	160.0	80.0				1.35	4.85	3.59
16-major	1.6	160	80	100.0	50.0	313.3	358		5.98	14.36	2.40
16-minor	1.6	160	80	100.0	50.0				3.30	7.95	2.41
23-major	2.3	160	80	69.6	34.8	298.7	373.4		7.85	21.89	2.79
23-minor	2.3	160	80	69.6	34.8				4.40	10.19	2.32
10-c-80	1.0	80		80		196	345.4	37.9	1.66	3.34	2.01
10-c-160	1.0	160		160					6.95	13.90	2.00
16-c-80	1.6	80		50.0		313.3	358		3.92	4.47	1.14
16-c160	1.6	160		100					16.63	21.59	1.30
23-c-80	2.3	80		34.8		208.7	373 /		5.23	7.13	1.36
23-c160	2.3	10	50	69.6		298.1	575.4		22.21	31.43	1.42

(3) 変形性能

図-4 に変形特性を示す.ここで,図中の*M*,は実験値 より求めた鋼管が降伏した時の曲げモーメントを示す. 同図より,両実験とも降伏モーメント(*M*_y)到達後,ゆ るやかに増加し,15mm以降は一定の曲げモーメントを 保持していた.また,Major軸実験の方が鋼管降伏後の 耐力の上昇が大きいことがわかった.

(4) 応力状態

図-5 に鋼管の圧縮側および引張側の2軸応力状態を 示す. 圧縮側では,曲げによる軸方向応力 σ_zが降伏点 に到達後,圧縮側に流動した.また,引張側は σ_zが降 伏に到達後,周方向応力 σ_θは引張側に流動した.

4. まとめ

- (1) 破壊形式は、曲げ圧縮による鋼管の局部座屈が発生した後、曲げ引張による鋼管のひび割れが見られた.
- (2) Major 軸実験の方が Minor 軸実験より鋼管の降伏後の耐力は上昇した.
- (3) 純曲げ強度(*M_{exp}*)は算定曲げ強度(*M_u*)を用いて安全
 に評価された.また,純曲げ強度(*M_{exp}*)と算定曲げ
 強度(*M_u*)には良好な相関係数(*r* = 0.94)が見られた.
- (4)曲げ圧縮側では、純曲げによる軸方向圧縮応力(σ_z) が降伏点(f_y)に到達後、周方向応力は圧縮側に流動 した.また、曲げ引張側の周方向応力は引張側に流 動した.

謝辞:載荷実験の実施にあたっては、神戸高専の学生 諸君にご協力いただき、感謝の意を表します.

参考文献

 Uenaka. K: Experimented study on Concrete Filled Elliptical/ Oval Steel Tubular Stub Columns under Compression, Thin-Walled Structures, Elsevier, Vol.78, pp. 131-137, 2014.

