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1. INTRODUCTION 
Sudden opening and closing the valves or starting and stopping the pumps can cause hydraulic transient from free 
surface-pressurized flow or pressurized-free surface flow (mixed flow) in ducts. This phenomenon can cause pumps or 
valves failures and duct breaches. This paper deals with a fundamental numerical model to simulate the confined air 
cavity that occurs under some flow conditions in ducts. Previous studies by Hosoda et al. (1994) and Hosoda et al. 
(2014) show this model can be applicable to reproduce air cavity in rectangular ducts. In this study, the numerical model 
has considered the pressure change of confined air to reproduce better entrapped cavity water surface profile in ducts. To 
evaluate the model, the simulation results compared with the experimental data of Baines (1991). Baines (1991) has 
conducted a series of experiments using a duct 10 cm square mounted at slopes from horizontal to 8˚. The length of the 
pipe was 4 m and he used weirs with 5cm and 7.5cm high to produce finite volume cavity.        
 
2. NUMERICAL MODEL 
The numerical model is composed of the continuity and momentum equations of open channel free surface, pressurized, 
and interface flows. Free surface flows, along with hypotheses on homogeneous and incompressible fluid, can be 
expressed by the partial differential continuity and momentum equations as follows: 
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where A = flow area; Q = flow rate; u = depth-average velocity; h = flow depth; τb = wall shear stress vector; R = 

hydraulic radius; 2u′ = turbulence intensity; θ = duct bottom angle; ρ = water density; g = gravity acceleration; x = 
spatial step; and t = time step.  
The wall shear stress is evaluated by Manning's formula (Eq. 3) and the eddy diffusity term is evaluated by Eq. (4). In 
this study, Manning roughness coefficient n = 0.01. 

2

1
3

gn u u
bx

h

ρ
τ =                             (3)    

2
( );          ,   0.05

u A u
AD D h uh hx x x

α α
′−∂ ∂ ∂

= = =
∂ ∂ ∂

           (4) 

For pressurized flow, Eqs. (1) and (2) are transformed to obtain continuity and momentum equations as follow: 
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where D = pipe diameter; and PD = pressure at top of pipe. 
The momentum equation at an interface is derived by integration of Eq. (2) and (6) over the control volume (Hosoda et 
al. 1994). 
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The effects of vertical acceleration of flow which causes the non-hydrostatic distribution of fluid pressure should be 
included in the momentum equation of open channel flow. Thus, the Boussinesq model follows (Hosoda et al. 2014) 
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To take account of the air pressure change inside the confined cavity, Boyl's law was considered by 

0;   ;   10 0 0 0
V

P V P V P P P P Pa a a a a Va

γ
γ γ= = + Δ Δ = −

  
     

            (9)    

where P0 = atmospheric pressure; Pa = air pressure in confined cavity; V0 = volume before air is confined; Va = volume 
after air is confined; ∆Pa = differences between confined air pressure and atmospheric pressure; and γ = specific weight 
(constant). 
The following term was added to the open channel free surface momentum equation to consider the air pressure change 
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where Bs = surface width inside the cavity. 
 
3. RESULTS AND CONCLUSIONS 
We tried to simulate the confined cavity observed in the experiments of Baines (1991) using a finite volume method. 
HSMAC method with pressure iteration procedure is applied to the pressurized flow region. The simulations were done 
by using ∆x = 0.02 and ∆t = 0.001. Fig 1 shows two cavities on 2˚ slope, w = 5cm. Fig. 2 and 3 show the simulation 
results for experiments on 2˚ slope and with w = 5cm and 7.5cm.  
 

 
Fig. 1 Photo of Two Cavities on 2˚ Slope, w = 5cm (Baines 1991) 

 
 
 
 
 

 
 

Fig. 2 Simulation Results for Cavities on 2˚ Slope, w = 5cm (Baines 1991) 
 

 
 
 
 
 
 

Fig. 3 Simulation Results for Cavities on 2˚ Slope, w = 7.5cm (Baines 1991) 
 
It is pointed out through the comparisons between the simulated results and experiments that it is necessary to consider 
the pressure change inside the confined cavity to simulate the finite cavity volume in a duct. In addition, the results show 
that to reproduce the confined cavity profile, it is important to neglect the pressure drop inside the cavity.  
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