赤外線熱計測によるトンネルコンクリートの浮き・はく離調査手法の検討

清水建設(株)			正会員	○久保昌史	
東京地下鉄(株)	正会員	小西真治	正会員	川上幸一	
(株)メトロレールファミ	シリティズ	小松正典	沢田秀樹		
(株)保全工学研究所			正会員	中山聡子	

1. はじめに

現在,赤外線熱計測によるコンクリートの浮き・はく離 調査手法(以下,赤外線法)は,法面や建物調査において は採用される事例も多く,マニュアル¹¹等も整備されてい る.しかし,日射の影響をほとんど受けないトンネル内で は温度変化が小さいことから,適用事例が比較的少ない. 近年,赤外線サーモグラフィ(以下,赤外線カメラ)の性 能が飛躍的に向上したため,温度変化が小さい箇所におい ても浮き・はく離を検出できる可能性が高くなってきてい る.今回,地下鉄営業線内において夜間の線路閉鎖時間に 浮きの検出を行い,打音法や非破壊・微破壊試験との比較 を行った.

2. 概要

赤外線カメラにより測定対象を撮影し、画像のあおり補 正、濃淡処理した赤外線熱画像から浮き・はく離を検出し た.測定原理は赤外線パッシブ法による.これは、測定対 象物の表面温度を強制的な加熱や冷却をせずに自然の状態 で測定し、熱画像として表示することでその温度差から異 常部の検出を行う手法である.赤外線熱画像は、温度分布 を可視化しているため温度変化が小さい場合、実構造物面 での変温部の位置特定が困難となる.よって、デジタルカ メラを用いて可視画像も同画角にて同時に撮影する.ここ で、浮きの定義は、従来の事例²⁾等から 5×5cm 以上の範 囲でコンクリート表面温度が周囲より 0.03~0.1℃以上の 温度差が生じている箇所(可視画像から浮き以外と判断さ れる変温部は除く)としている.

3. 現地調査

調査対象は、地下鉄営業線内のボックスカルバート側壁

写真-1 上床版撮影状況

部4地点10箇所とした.調査期間は平成25年11月中の5日間であった.

調査は、赤外線熱画像および可視画像撮影に加え、打音 調査を行った後に、非破壊・微破壊試験(電磁波レーダー 試験、弾性波試験、内視鏡調査)を実施した.また、調査 地点近傍に固定式小型温度計を設置し、調査期間中を含め て坑内気温、コンクリート表面温度を10分間隔で連続的に 測定した.調査位置を図-1に示す.

今回の調査箇所は、以下の手順により選定した. ①打音調査が未実施な路線内の約2kmの範囲を選定 ②全体の上床版およびハンチ部を赤外線カメラで撮影し

(写真-1),コンクリート表面の温度分布の傾向を把握 ③坑口や換気口,駅舎からの距離等から特徴的な温度条件 を示す13地点を選定し,側壁・天井の範囲の浮きを検出 ④側壁部において浮きが見られる4地点を選定

4. 調査結果

調査結果の概要を表-1に,赤外線熱画像の例を図-2に示

キーワード 非破壊調査 トンネル 赤外線熱計測 パッシブ法 温度環境 打音検査 連絡先 〒104-8370 東京都中央区京橋 2-16-1 清水建設㈱ TEL03-3561-3915

-979-

地点No		No.13		No.10		No.6			No.4		
距離程(m)		2195		1388		899			666		
温度条件	撮影範囲の温度分布	17.45~18.35		19.20~20.00		25.68~26.38 21.40~22.00		23.10~23.70			
	大気温とコンクリート表面温度差	0.59		0.34		0.89	0.32		0.26		
	浮き部と健全部温度差	0.09		0.08~0.10		0.1	0.12		0.04~0.05		
近接目視による撮影対象面の状況		目だった変状は見られ 水 ないが、コンクリート表面 見 が全体的に荒れている。が		水平方向に補修部分が 見られ、補修部分に浮き が見られる。		⑤補修部に浮きが見られる ⑥⑦⑧目だった変状は見られないが、コンクリート 表面が全体的に荒れている。		浮きの周辺には剥落し、 鉄筋が露出している部 分が見られる			
	試験番号	1	2	3	4	5	6	7	8	9	10
打音法との比較 ○:範囲一致、△:一部一致、×:浮きなし		Δ	×	0	0	0	×	Δ	Δ	0	0
内視鏡調査	損傷状況	顕著な豆板、 深さ100mm 以上	小さな空洞(2 ~4mm)が0~ 50mmに点在	空隙有り 深さ3~4mm	補修部境界 に空隙、深さ 2~3mm	補修部境界 に空隙、 深さ10mm	小さな空洞、 豆板0~35 mm	5mm程度の 空洞が0~81 mmに点在	顕著な豆板、 深さ98mm以 上	空隙有り 深さ7、16 mm	空隙有り 深さ10mm
	状態	豆板	—	空隙	空隙	空隙	豆板	豆板	豆板	空隙	空隙
電磁波レー ダー試験	被り平均 (mm)	62	66	55	66	102	42	68	39	17	21
弾性波試験 -	赤外線熱画像	ほぼ一致	健全部一致	ほぼ一致	位置ずれ	浮き部一致	一致しない	ほぼ一致	赤外線範囲 が狭い	ほぼ一致	赤外線範囲 が狭い
	打音	ー致しない部 分が多い	_	打音範囲が 広い	打音範囲が 広い	浮き部一致	一致	打音範囲が 広い	打音範囲が 広い	ほぼ一致	ほぼ一致
							States -	2			

表-1 調査結果概要

□:赤外線浮き,□:打音浮き,—:電磁波レーダー試験,+:内視鏡試験,○:弾性波(健全),○:弾性波(小規模な空洞),○:弾性波(浮き)

す. また,調査時の温度条件は,調査地点により異な るが,坑内大気温度は最高 17.17~23.53℃,最低 12.75 ~22.61℃,平均 15.41~23.05℃,コンクリート表面の 温度の最高値と最低値の差は 0.60~0.90℃,坑内大気 温度とコンクリート表面温度の差は,0.26~0.59℃で いずれも大気温度が低温であった.

また,浮き箇所は健全部と比較して,0.04~0.12℃ 低温となっていた.

調査の結果,赤外線法による浮き部 10 か所のうち, 8 か所において,打音調査でも浮きと判定された.こ のうち5か所についてはその範囲も一致した.

これより,地下鉄営業線内における赤外線法による 浮き・はく離調査はある程度可能であると考えられる. 一部結果が一致しなかった点については,適用条件を 整理する必要がある.

一方,非破壊・微破壊試験との比較では,内視鏡調 査により,赤外線法で検出された浮きは,内部の空隙 だけでなく豆板も含まれていることがわかった. 躯体 内部の空隙の深さは 2~16mm,豆板の深さは 100mm 程度であった.

電磁波レーダによる被り深さと浮き深さの関係から, ⑨, ⑩についての浮きの原因は鉄筋腐食と考えられた.

弾性波試験では,弾性波速度が3,050m/s以上を健全, 2,130~3,050m/s を内視鏡調査により観察された小規模 な空洞がある箇所,部材背面からの反射波が計測され

図-2 赤外線熱画像の例

ず低周波のたわみ振動波形を示す箇所を浮きとしたが, 赤外線法による結果とある程度一致した.

4.おわりに

今回の調査により,地下鉄営業線内において赤外線 法による浮き・はく離調査が適用可能であること,赤 外線法では躯体内部の空隙だけでなく豆板も検出でき ることが明らかとなった.

【参考文献】

- 1)例えば,独立行政法人 土木研究所:熱赤外線映像 法による吹付のり面老朽化診断マニュアル,平成 8 年1月
- 2) 久保, 天野, 中山, ファン:赤外線画像と可視画像 を併用した画像診断技術の開発, コンクリート工学 年次論文集, Vol.33, No1,pp.1847~1852, 2011