㈱高速道路総合技術研究所	正会員	横山	貴士
㈱高速道路総合技術研究所	正会員	宮永	憲一
㈱四国総合研究所	正会員	広瀬	誠

1. 目的

既設ポストテンション PC 橋においては, 施工当時 のグラウト材料の特性やグラウト充填技術に起因す るグラウト不良, いわゆる「PC グラウト問題」があ るが, PC 橋の構造特性から PC 鋼材の健全性を外観 から定量的に把握することが困難であり, PC 鋼材の 健全性を把握する非破壊検査技術の早期確立が望ま れる状況にある.

こうした背景のもと、国内においては電柱等の鉄 筋破断を検知する技術として既に実用化されている 漏洩磁束法に着目し、PC 鋼材破断を検知する新たな 非破壊検査技術の確立を目的として基礎的な供試体 実験を実施した.本稿ではこの供試体試験の調査結 果を報告する.

2. 漏洩磁束法

2.1 漏洩磁束法への着目

既往のPCグラウト不良やPC鋼材破断の検知に対して 実用化されている非破壊検査技術としては,衝撃弾性 波法・インパクトエコー法,X線法,広帯域超音波法な どがあるが,鋼材の破断そのものの検知は不可,調査 の実施や調査結果の解析に対して専門的かつ熟練した 技術・知識を必要とする,調査方法や機器が大掛かり・ 高価であるなどの種々の課題がある.そのため,鋼材 の破断検知に対して有用な技術であり実用化の可能性 が高いことのみならず,取り扱いが比較的簡易に行え ること,調査結果に対して一定の知識を有すれば比較 的簡易に判定が可能であることなどを考慮した結果, 電柱などの鉄筋破断検知に対して実用化され一定の結 果が得られている漏洩磁束法に着目することとした.

2.2 漏洩磁束法の概要

鋼材が強磁性体であることを利用し、コンクリー ト表面から永久磁石などにより内部の鋼材を着磁し、 着磁後に測定した磁束密度分布波形(磁束密度-鋼 材軸方向位置)から、鋼材の破断箇所付近に発生す る漏洩磁束の有無を判定することで、鋼材の健全性 を診断する調査手法である.

測定結果を磁束密度 – 測定距離の関係で表わすと, 鋼材が健全である場合は,鋼材の着磁範囲のほぼ両 端がそれぞれ S 極・N 極となるため,測定範囲でほ ぼ一定の勾配を持つ磁束密度波形が得られるが,破 断している場合は,破断箇所前後の位置でN極・S 極の連続したピークを持つ波形 (S字波形)となる ことが特徴である.

3. 供試体実験

3.1 供試体概要

供試体は、図-1 に示す寸法で、PC 鋼材種類(PC 鋼線、PC 鋼より線、PC 鋼棒)、PC 鋼材・鋼製シース の状態(健全,腐食,破断)を組合せた3体の供試 体を測定に使用した.

図-1 供試体概要

3.2 供試体測定方法

測定は、図-1 に示す供試体の 1000mm~3000mm の範 囲について、シース芯に対してかぶり 100 mm側から シースと平行に磁石により着磁を実施し、その後か ぶり 100 mm側、250 mm側それぞれから磁束密度を測定 した. なお、着磁についてはスペーサーにより、シ ース芯から 150 mmの離隔位置から実施した.

3.3 供試体実験測定結果

図-1 に示す供試体が表-1 の条件のものを,かぶり 100 mm側およびかぶり 250 mm側からそれぞれ磁束密 度を測定した結果を図-2 および図-3 に示す.

キーワード PC グラウト問題, PC 鋼材破断, 非破壊検査, 漏洩磁束法, 実験
連絡先 〒194-8508 東京都町田市忠生 1-4-1 ㈱高速道路総合技術研究所 橋梁研究室 TEL042-791-1943

表-1 供試体の PC 鋼材およびシースの条件

	シース管1	シース管2	シース管3
配置鋼材	PC 鋼より線	PC 鋼より線	PC 鋼より線
鋼材状態	健全	健全	50mm 破断
シース種類	鋼製シース	鋼製シース	鋼製シース
シース状態	健全	健全	50mm 腐食

図-2 供試体の磁束密度分布(かぶり100mm 側)

図-3 供試体の磁束密度分布(かぶり250mm 側)

かぶり 100 mm側からの測定においては、シース管 3 における鋼材破断位置(位置 2000 mm)を中心に明確 な S 字波形を示しており、破断と診断できる波形で あった.ここで、小さな凹凸波形は供試体のスター ラップの影響による波形である.また、鋼材種類が PC 鋼線、PC 鋼棒の供試体においても同様の測定結果 であった.

一方,かぶり 250 mm側からの測定においては,シ ース管 3 の破断位置で,小さな S 字波形は示してい るが,明確に破断と診断できる波形とはならなかっ た.この差は,かぶりが厚くなり,測定対象と測定 機器の離れが大きくなると漏洩する磁束密度が小さ くなり破断の検知が困難となる為である.

これは、PC 鋼材への着磁量を上げれば測定可能と なると思慮された.そこで、かぶり厚さが 200 mmあ る別の供試体を用いて、追加実験を実施することと した.

3.4 追加実験供試体概要

追加実験供試体の概要を図-4 に示す. PC 鋼材・シ ースは, それぞれ PC 鋼より線・鋼製を用いているが, 破断は実橋を模擬し, 腐食破断させている(図-5).

図-5 PC 鋼より線腐食破断の状況

3.5 追加実験測定結果

追加実験における着磁は,前節までの着磁量の約2 倍となる磁石を用いて着磁し測定を実施した.

測定結果を図-6に示す.

図-6 追加実験における磁束密度分布

破断位置は、図-6中の約2700mの破線の位置であるが、その位置を中心に明確なS字波形を示しており、破断と診断できる波形を検知することができた.

4. まとめ

「漏洩磁束法」により, PC鋼材破断検知の供試体実験を実施した.その結果から, 測定対象までのかぶり厚さに応じた着磁により,かぶり220mm程度までは, PC鋼材の破断検知が可能な非破壊検査手法であることを確認した.そのため,実橋での適用に当たっては,実際のかぶり厚さに応じた,適切な着磁量の検討が必要である.