定着体を用いた杭・柱接合部の耐力評価

(㈱東日本旅客鉄道 〇正会員 石田卓也 正会員 森本慎二 正会員 小林寿子 正会員 井口重信

1. はじめに

高架橋の杭、柱、地中梁の接合部において根巻き鋼 管を導入する場合、杭と柱の主鉄筋の重ね継手長が長 いため、根巻き鋼管高さが大きくなり、コストや施工 性の面で課題となっていた。そのため、杭・柱の主鉄 筋の端部に定着体を取り付けた構造とすることで、必 要な重ね継手長を縮小した接合部の構造を提案してい る(図-1(a))。井口ら¹⁾は鋼管を巻いた円形の無筋コ ンクリートに定着体を想定した鋼製円柱治具を配置し、 それらに鉄筋の引張力を見立てた圧縮力を加えて(図 -1(b))、接合部の耐力評価式を提示している。しかし この試験方法では、鉄筋が介在し力が伝達する機構や 鉄筋の付着力の影響は評価できていない。そのため、 本試験では図-2のように鉄筋を接合部に貫通させ定着 体のない側を双方に鉛直方向に引張る引張試験を実施 し、より実状に合った評価を行った。

2. 試験概要

引張試験では、鉄筋を入れた試験体を4体製作した。 各試験体の諸元と載荷試験結果及び既往の耐力評価式 による最大耐力を表-1、試験体概要を図-2に示す。

既往の試験体諸元¹⁾を基に、試験体1を基本構造と 定め、試験体2は鋼管長を短くしたもの、試験体3は せん断距離を大きくしたもの、試験体4は鋼管長・せ ん断距離を変えずに外径を大きくしたものとした。な お、鉄筋間隔を均一にするため、杭・柱鉄筋を円環状 に配置し、定着体にはD19用のナット及びナットプレ ート(SD390)を使用した。載荷方法は万能試験機により、 図-3のように上下方向に引張力を作用させ、荷重が低 下傾向を示したところで載荷を終了した。

3. 試験結果

図-4に試験後に確認されたひび割れのイメージとその順序を示す。試験体 1~4 は全てのケースで荷重の増加とともに接合部のコンクリート表面に柱鉄筋の定着

鋼製円柱治具 柱 定着体 地中梁 錮管 定着体 杭 🔒 圧縮力 (a) 実構造物 (b) 試験体モデル化範囲 試験体モデル化範囲 図 - 1 杭鉄筋 D19-12本【A-A】 (SD345) D R2 ←R1→ 定着体 ∱A A' 柱鉄筋 鋼管 D19-12本 (SD345) 柱鉄筋 t=3.2 mm 杭鉄筋 図-2 試験体概要 【上側】 _ 柱鉄筋 (試験体) 【下側】 杭鉄筋 - ひび割れ 図-3 試験状況 図-4 ひび割れ発生順序

体が無い側で最初に円環状のひび割れが発生した。そ の後、杭の定着体が無い側、柱の定着体側、杭の定着 体側でも円環状のひび割れが生じ、各々から鋼管端部 へ向けて放射状のひび割れが発生した。最終的には接 合部の杭と柱側の鉄筋間で柱定着体部が押し込まれる ようにコンクリート表面に段差が生じ、耐力が低下し

キーワード 定着体、耐力評価、せん断破壊、付着破壊

·連絡先 〒370-8543 群馬県高崎市栄町6番26号 JR東日本上信越工事事務所 工事管理室 TEL 027-324-9369

-365-

試験体 名称	外径 D(mm)	内半径 Ri(mm)	鋼管長 L(mm)	鋼板厚 t(mm)	上部支点位置 R1(mm)	下部支点位置 R2(mm)	せん断 スパン a(mm)	a/L	コンクリート 圧縮強度fc (N/mm ²)	鉄筋降伏応力 (N/mm ²)	鋼管降伏応力 (N/mm ²)	最大荷重 Pmax(kN)	既往の耐力 評価式による 最大耐力 Pcal(kN)	実験値と評 価式耐力と の比率
試験体1	558.8	276.2	240	3.2	100	160	60	0.25	17.2	- 449	379	1563.1	966.7	1.62
試験体2	558.8	276.2	100	3.2	100	160	60	0.60	16.1			443.4	251.9	1.76
試験体3	558.8	276.2	240	3.2	100	240	140	0.58	22.7			1088.0	781.8	1.39
試験体4	711.2	352.4	240	3.2	100	160	60	0.25	21.2			1595.0	992.6	1.61

表-1 試験体諸元及び載荷試験結果

た。図-5に実験終了後の各試験体の切断面を示す。杭 と柱の鉄筋間のひび割れに着目すると、試験体 1, 2, 4 は柱定着体近傍から杭定着体近傍にかけて生じた斜め ひび割れによるせん断破壊の様相を呈している。これ に対し、試験体 3 は柱定着体近傍からほぼ 45°の角度 で斜めひび割れが生じている他、中央付近からも同様 のひび割れが発生しており、柱鉄筋軸方向の付着切れ によると思われる割裂ひび割れも確認できた。

図-6 に荷重変位曲線を示す。a/L が 0.25 の試験体 1,4 は鉄筋間のコンクリートの破壊よりも鉄筋の降伏 が先行し、その後最大耐力を保持したまま耐力低下ま でに 20 mm 程度変位が伸展した後、鉄筋間のコンク リートがせん断破壊したと推察される。一方、a/L が 0.58,0.60の試験体 2,3 は急激に耐力が低下した。こ

図-5 試験後の試験体中心切断面

れは、試験体2は柱定着体からの斜めひび割れが分散 せずに上方へ抜けていること、試験体3は、ひび割れ は分散しているが中間部から生じた斜めひび割れが短 く上方へ抜けていることより、変位の小さい段階でコ ンクリートがせん断破壊したためと推察される。

4. 既往の評価式との比較

既往の試験¹⁾により求めた耐力算定式を下に示す。

$$P_{cal} = f'_c \cdot (a/L)^{-1.166} \cdot (1000/L)^{0.4}$$

 $\cdot \{4.53(t/R_i) + 0.0538\} \cdot S$

(P_{cal}: 最大耐力 (kN), S: せん断面積 (mm²))

引張試験による最大耐力と上記の鉄筋を配置してい ない耐力評価式により算出された最大耐力を比較する と 1.39~1.76 倍に増加しているため、既往の耐力評価 式は安全側の評価となることがわかった。

5. まとめ

根巻き鋼管中の杭と柱の主鉄筋の重ね継手長を短縮 するために鉄筋の端部に定着体を設けた構造の耐力を 評価するために行った今回の試験により、次のことが 明らかとなった。

- 破壊性状は、鋼管長やせん断スパンの違いにより
 破壊形態が変わっており、鋼管長に対しせん断スパンが短くなると、鉄筋の拘束効果が卓越して最
 大耐力が大きくなる。
- 杭と柱の主鉄筋が根巻き鋼管中に存在することに より定着部のみをモデル化した試験体から得られ た評価式より大きな耐力が得られることが確認で き、既存の耐力評価式は安全側の評価となること がわかった。

参考文献

 井口重信、坂本真紀:鋼管に拘束した無筋コンクリートの 押し抜きせん断耐力に関する実験的検討、土木学会年次 学術講演会