複合剥離モードにおける CFRP プレートの疲労付着性状に関する実験的検討

筑波大学大学院	学生会員	○管	祥Ŧ	韋
筑波大学大学院	学生会員	張	偉	
筑波大学	正会員	金グ	、保	利之

1. はじめに

著者らは、コンクリート表面に接着した CFRP(Carbon Fiber-Reinforced Plastic)プレー トに、剥離(モードI)とせん断(モードII) の複合剥離が作用する場合のCFRPプレートと コンクリートの付着性状に着目し、試験体コン クリート表面に段差を設けた二面せん断付着 試験を行い、破壊性状および付着強度を検討し ている¹⁾.本報では、複合剥離における疲労付 着性状を把握するために、段差を設けた二面せ ん断付着試験体を用いて、疲労試験を行う.

表-3 疲労実験結果

2. 実験概要

試験体形状を図−1 に、試験体の一覧を表−1 に示す. 基本となる試験体は二面せん断型付着試験体で 150×800mm のコンクリートブロックに CFRP プレートを貼付したものである. せん断ー剥離複合疲労付着 特性を検討することを目的として、試験体中央部に段差(初期角度)を設け、段差レベル(tanθ=0.035, 0.070) を主要な変動因子とした. 試験体中央部 250mm 区間では、CFRP プレートとコンクリートの付着は絶縁して いる.

加力は図-1 に示す引張試験により行う.疲労荷重は,周波数 1Hz の正弦波とした.荷重上限値は,静的 載荷実験による最大荷重の 80%とし,下限値は 10%とした.計測項目は引張荷重,全体変形,中央部ひび割 れ幅, CFRP プレート歪および試験体側面に設置した変位計による CFRP プレートの剥離変位(プレートの コンクリート表面からの浮き)である.計測方法は表-2 に示すように各段階で疲労載荷を一旦中断し,1サ

試験体	コンク リート	CFRP プレート			段差レベル		静的実験による 最大荷重	疲労荷重	
	圧縮強度 (MPa)	弾性係数 (CPa)	厚 (mm)	幅 (mm)	段差 (mm)	貼付 鱼産	P_{max}	P_{up}/P_{max}	Plow/Pmax
	(IVII a)	(01 a)	(mm)	(IIIII)	(IIIII)	円反	(KI 1)		
C13HS-2-F80	17.9	150	1	50	8.8	2°	26.60	80%	10%
C13HS-4-F80					17.5	4°	18.27	80%	10%
C21HS-2-F80	20.5	- 150			8.8	2°	27.60	80%	10%
C21HS-4-F80	29.5				17.5	4°	19.73	80%	10%

表-2 計測方法

サイクル	計測間隔	計略体	疲労荷重(kN)		[−] 市 一 一 中 一 本 合 N	萨 博 形式	
200 まで	20 サイクル毎	叶 阅史 14	P_{up}	P_{low}	波力对明 10	收载心心	
1000 まで	100 サイクル毎	C13HS-2-F80	21.28	2.66	1,655	コンクリート面	
10000 まで	1000 サイクル毎	C13HS-4-F80	14.62	1.87	1,635		
100000 まで	10000 サイクル毎	C21HS-2-F80	22.08	2.76	6,800	樹脂面	
1000000 まで	80000 サイクル毎	C21HS-4-F80	15.78	1.97	1,028		

キーワード CFRP プレート,疲労付着性状,複合剥離,剥離角度

連絡先 〒305-8573 茨城県つくば市天王台 1-1-1 筑波大学 システム情報工学研究科

イクル分のデータを静的に計測した.

3. 実験結果·考察

3.1 実験結果

破壊状況の例を図-2 に示す. C13HS-2-F80ではコンクリート表層内 部における剥離であったが,他の試験 体では樹脂面における破壊であった.

疲労試験の結果を表-3 に示す.以下,例として C21HS-2-F80 の結果を示す.各サイクル数におけるプレートの 至分布を図-3 に示す.プレート歪は サイクル数 1,000 までは特に変化はな く,4,500 を超えると,全付着区域の 歪が大きくなっている.これはプレー トがコンクリートから剥離したため と考えられる.

サイクル数と中央部ひび割れ幅関 係を図-4に示す.中央部ひび割れ幅 はサイクル数 1,000 および 4,500 にお いて大きくなっていることが確認さ れた.

プレート剥離変位の分布を図-5 に 示す.プレート剥離変位は、同一断面 箇所におけるコンクリートとプレー ト表面変位の差として求めた.サイク ル数 1,000 までは D3~D10 (図-1 中の 下側面)においては剥離は見られない が、サイクル数の増加に伴い変位が大 きくなり、サイクル数 5,000 程度で両 側ともに剥離した.

3.2 Pup/Pmax-N曲線

上限荷重比 P_{up}/P_{max} と疲労寿命 Log(N)の関係を図-6 に示す. 図中 の〇, \triangle のプロット点は段差レベルのない文献¹⁾の実験結果である. C21HS-2-F80 試験体の疲労寿命は,文献¹⁾の結果よりも長くなってい る. 一方で,他の試験体の疲労寿命は同等であった.

- 4. まとめ
 - (1) 複合剥離において、プレートの剥離が生じるサイクルからプレ ート歪およびひび割れ幅の増加が見られた.
 - (2)付着疲労寿命は段差のない試験体よりも長くなる場合があった.

参考文献

1) 張偉, 金久保利之: Experimental Study on Bond Behavior between CFRP Plate and Concrete under Combination of Fracture Mode, 土木学会年次学術講演会講演概要集, 部門V-197, 2012.9

