茨城大学工学部

茨城大学工学部

茨城大学工学部

茨城大学工学部

正会員 0沼尾 達弥

舟川

木村

勳

亨

美春

正会員

正会員

学生会員 久保

1. はじめに

中性子ラジオグラフィとは、中性子が物質を透過した 際に原子核と中性子の相互作用(捕獲・散乱)により生じ る減衰特性を利用した非破壊可視化技術である.図1に 中性子が物体を透過した際に減衰する概念を示す.中性 子は物質内の H, H₂O などの元素や分子,および含有水量 に応じる物質の密度や厚さを因子として減衰する.入射 中性子強度を I₀として,物体を通過することにより減衰 した中性子強度を I とした場合,両者の関係は,物質を 構成する元素によって決定される線吸収係数 μ [1/cm]と 物質の厚さ(σ [cm])(以下,透過距離とする)の指数関数で ある式(1),(2)で表わされ, I/ I₀は中性子強度の変化率と なる.

$$I = I_0 \exp(-\mu \sigma) \tag{1}$$

$$-\ln\frac{I}{I_0} = \mu\sigma \tag{2}$$

尚,水の単位量に対する減水効果(線吸収係数)を既知 として,その透過距離により含水量を表すことができる.

中性子ラジオグラフィは、物質を透過した中性子をシ ンチレーション光に変換するコンバータに到達すると、 像として映し出され撮影画像が得られる.その画像の変 換概念を図2に示す.この図で、BG:中性子を照射しな い場合の画像、FF:透過させる物質がない場合の画像, AA:透過させたい物質を置いた場合の画像とする.

これらの画像をグレイスケールに変換した後に, FF-BGによりグレイスケール範囲(U₀)を, AA -BGによ り透過後のグレイスケール(U)を求める.その比 U/U₀ から, U'=U/U₀=I/I₀として,中性子強度の変化率が求め られる.しかし,画像から求めた U'と式(2)から $\mu や \sigma$ を求めても,様々な影響因子により物質の定量値にはな らない.そこで本報は,中性子ラジオグラフィ画像に及 ぼす様々な影響因子を提示するとともに,透過距離の同 定に及ぼす様々な主要因について考察を行う.

図2 画像変換の概念

2. 影響要因

中性子ラジオグラフィにおける影響要因として,中性 子源やその強度,コリメータ通過後の非並行特性,被写 体の構成成分や散乱線,コンバータの特性,カメラの解 像度や歪みなどが上げられる.次項に,主な影響因子と その現象について整理・考察する.

キーワード:中性子ラジオグラフィ,線吸収係数,透過距離,含有水量,影響要因 連絡先 〒316-8511 茨城県日立市中成沢町 4-12-1 茨城大学工学部都市システム工学科 Tel:0294-38-5168

2.1 中性子線の非並行性による影響

図3に中性子線の非並行性が及ぼす影響を示す.中性子 線は、図1のように並行成分のみならず,非並行成分も含 んでいる.その為、図2のFFのように中央部の中性子強 度が高くなる傾向を示す.この中性子線の非並行性により, 画像の拡大や、物質端部付近では、画像にぼけが生じる ことになる.

更に、物質がない状態の入射中性強度 I_0 よりも、物質 に入射される中性強度 I_0 の方が大きくなるため、画像の 変化率に影響を及ぼすとともに、物質とコンバータの距 離が短くなるほど、 I_0 が小さくなり分解能が低下する.

これらの傾向は、物質とコンバータの距離が長くなる ほど、物質の厚さが厚いほど影響が大きくなる.

2.2 中性子線の散乱の影響

図4に中性子線が物質に照射された際の物質内の散乱 の効果の概念を示す.中性子線は、物質を透過する際に、 一部の中性子線が散乱を起こすため、物質端部では中性 子線が物質外に透過することにより中性子強度が低下す るとともに、物質端部外に高い中性子強度が投影される. この影響は、物質とコンバータの距離が長くなるほど、 物質の厚さが厚いほど小さくなる.

その他、散乱線はコリメータおよび照射室内の機器 類や遮蔽体にも依存すると考えられる.

2.3 中性子線の捕獲の影響

μとσの大小により、中性子線の減衰率が指数関数表記 上の直線関係からずれる傾向があり、X線においても示さ れるビームハードニング効果として表される.

図5にビームハードニング効果の概念図,および図6 に厚さが変化する場合のビームハードニング効果の影響 を示す.ビームハードニング効果とは,照射される放射 線が様々なエネルギーを有することから,放射線が物体 を透過する際には低エネルギー放射線から減衰するため, 物質の厚さが増すほど高エネルギー放射線の比率が増し, 物質が厚くなるほど透過率の変化が少なく,含有物質を 小さく推定する結果となる.

2.4 撮像に関わる影響要因

前記に示した幾何的誤差と共に、コンバータやカメラ の空間分解能,撮影時間なども画像精度に影響を及ぼす.

3. まとめ

中性子ラジオグラフィ画像を用いて透過物体距離の 同定(物質の定量評価)を行う場合には、中性子線の非並 行性、散乱、捕獲の影響を考慮する必要がある.

【参考文献】・中性子ラジオグラフィを用いたセメント硬化体中の水分 評価に関する基礎的研究:舟川勲,沼尾達弥,飯倉寛:土木学会論文 集,Vol.67/No.4,596-604,2011/11

・「中性子イメージング技術の基礎と応用」,(社)日本アイソトープ協会, 2012/3.