長崎大学大学院 学生会員 ○博多屋 智志 長崎大学 正会員 松田 浩 長崎大学 正会員 出水 亨 同済大学 非会員 趙 程

1. はじめに

近年, コンクリート構造物の長寿命化の観点から, 新設構造物では温度応力ひび割れや収縮ひび割れの抑 制が、既設構造物では、鉄筋腐食やアルカリ骨材反応 のような個々のひび割れ発生要因の明確化やひび割れ 進展に対する防止対策が詳細に検討されており、コン クリート構造物の健全度調査において、様々な要因で 発生するひび割れの評価に注目が集まっている.この ような状況に対し、ある現象に対して構造物内にどの ようにひび割れが発生し、それが供用期間内での時 間・空間スケールでどのように進展していくのかの検 討は比較的少ない.また、個々のひび割れを対象とし た研究においても,破壊後のひび割れ状況のみを取り 扱っている場合が多く,ひび割れ発生から進展過程を 取り扱った研究は少ない.この理由として、従来のひ ずみゲージによる計測法では、瞬間的かつ"いつ"、"ど こに"、"どのように"発生するかが予測不能なひび割 れを観察することが困難であることが原因として挙げ られる.

本研究では、光学的計測法の一つであるデジタル画 像相関法(以下, DICM と略記)を用いて, コンクリート 系材料の圧縮試験におけるひずみ分布を画像計測から 算出し,種々の欠陥を有するコンクリート系材料のひ び割れ発生・進展挙動の可視化を行った.

2. 試験概要

本試験では、き裂を有する石膏板を対象として一軸 圧縮試験を行った. 試験体は、水と石膏を重量比 1:5 の配合で作成した. 試験体の材料特性を表1に示す. 試験体は、複数本のき裂を導入したものを作成した. 一き裂導入板ではき裂角度を α=15°, 30°, 45°, 60°の 4 つを作成した. 二き裂導入板ではき裂角度を α=45° とし、き裂間の角度を β=90°、135°、180°とした. 三 き裂導入板ではき裂角度を α=15°, 30°, 45°, 60°とし, き裂間の角度を β=75°, 90°, 105°, 120°とした. 配置 タイプは文献 ¹⁾を参考にして決定した.また,作成し た試験体の概略を図1に、試験体名称を表2に示す.

試験は 2000kN 万能試験機にて試験体が破壊するま で行い、載荷速度はおよそ 0.1kN/秒とした. 試験機と 試験体の間にはテフロンシートを敷き、接地面との摩 擦を軽減させた.計測にはデジタル画像相関法を用い, 2 台のカメラにより、載荷開始から破壊まで1 秒間隔 で撮影した. 撮影された画像は約 0.08mm/pixel で構成 される. 撮影時は試験体表面の明るさを一定に保つた め, 白色 LED ライトを 2 台用いた.

一き裂	α	二き裂	β
1-a15	15°	2-b90	90°
1-a30	30°	2-b135	135°
1-a45	45°	2-b180	180°
1-a60	60°		

三き裂 α/β	75°	90°	105°	120°
15°	3-a15b75	3-a15b90	3-a15b105	3-a15b120
30°	3-a30b75	3-a30b90	3-a30b105	3-a30b120
45°	3-a45b75	3-a45b90	3-a45b105	3-a45b120
60°	3-a60b75	3-a60b90	3-a60b105	3-a60b120

キーワード:デジタル画像相関法,全視野ひずみ計測,ひび割れ進展,コンクリート 住所:長崎県長崎市文教町1-14 長崎大学大学院工学研究科総合工学専攻 電話, FAX: 095-819-2590

3. 試験結果

3.1 ーき裂導入板

ーき裂導入板の最大荷重を表 3 に示す.表 3 から 1- α 30 が最小値, 1- α 60 が最大値を示した. き裂角度が 大きくなるにつれて最大荷重も大きくなる傾向にある ことがわかる.最大主ひずみ分布図を図2に示す. Wing Crack が α =15°, 30°, 45°の試験体で発生した.しかし, 角度が α =60°より大きくなるとWing Crack は発生しな くなり, ずれを生じて発生したと考えられるせん断ひ び割れが発生した.この2パターンのひび割れの詳細 を図3に示す.

3.2 ニき裂導入板

二き裂導入板の最大主ひずみ分布図を図4に示す. 二き裂導入板では、き裂間に図5に示すような3パタ ーンのひび割れが確認された.このひび割れパターン は互いのき裂先端からの距離とき裂を繋ぐ角度βに依 存していることがわかる.

3.3 三き裂導入板

三き裂導入板の最大荷重を表4に示す.表4の結果 より、B=120°の試験体が他の試験体に比べて最大荷重 が大きかった.これは、B=120°の試験体のき裂間の角 度が広く, Wing Crack が繋がりにくい配置であったこ とが原因であると考えられる.これより、き裂の配置 が最大荷重に大きく影響を与える事がわかる.次に, 3-a30b90 における応力-ひずみ曲線および最大主ひず み分布図を図6に示す. グラフ中の番号とひずみ分布 図の番号は対応しており,任意の点のひずみ分布を観 察することができる. α=15°, 30°, 45°の試験体で, き 裂部分からのひずみ集中が明確に見られ,1つ1つの き裂から独立して発生し、その後、そのひずみが他の 部分と繋がるようにして破壊した.しかし、図7に示 す破壊後の最大主ひずみ分布図の結果より、3-a60b90 以外の試験体では、き裂部分からのひずみ集中があま り見られず、それに伴い、ひび割れも試験体の端部か ら発生する場合が多かった.

4. まとめ

・一き裂導入板では、き裂角度が大きくなると最大荷 重が大きくなる傾向があった.

・一き裂導入板では、き裂角度によって破壊パターン が変わることも確認できた.

・二き裂導入板では、3つのひび割れパターンが確認 できた.

・三き裂導入板の α=60°の一部の試験体を除いて,き 裂1つ1つから独立してひび割れ発生を確認できた.

謝辞

本論文を作成するにあたり,JR 東海株式会社 前田 弦輝様(当時大学院)から,丁寧かつ熱心なご指導を賜 りました.ここに感謝の意を表します.

参考文献

 Wong., R.H.C., Chau., K.T., Tang., C.A. and Lin, P.: Analysis of Crack Coalescence in Rock-like Materials Containing Three Flaws - Part I : experimental approach, *International Journal of Rock Mechanics & Mining Sciences*, 38-7 (2001), 909-924.

き裂角度 α/β	75°	90°	105°	120°			
15°	8.3	8.0	7.3	9.8			
30°	10.4	10.2	9.5	12.4			
45°	7.4	11.2	8.3	9.3			
60°	9.6	9.4	8.4	10.7			

