3 ヒンジアーチカルバートの地震時挙動解析

首都大学東京大学院	学生会員	○波多野	陽香
首都大学東京大学院	正会員	土門	岡川
首都大学東京大学院	正会員	西村	和夫

1. 背景および目的

3 ヒンジアーチカルバートは、短スパン橋梁や現場打ちボックス カルバートに代わるものとして開発されたアーチ構造物(図 1)であ る. プレキャストで作成された主要部材を、左右交互に組み立てる ことによりアーチを形成するため、作業性の向上や工期の大幅な短 縮が可能となる. 3 ヒンジアーチカルバートは主に施工性に優れた 構造物であるため、施工例も増えていたが、2011 年の東日本大震 災では地震被害を受けた. しかし、3 ヒンジアーチカルバートの地 震時挙動が複雑であるため、その被害原因を特定することが難しい.

そこで本研究では、3 ヒンジアーチカルバート本体、基礎部、地 盤および盛土を三次元 FEM でモデル化し、動的解析を行うことに より、地震時のカルバートの挙動を調べた.そして、地震時挙動の 解明により地震時挙動特性を明らかにすることを目的とした.

2. 構造概要

図2に本研究の対象である3ヒンジアーチカルバートの構造図を 示す.本構造物はクラウン部と脚部がヒンジ構造のプレキャストア ーチ部材を組み立て,その周辺に盛土を施工した構造となっている.

3. 解析手法

本研究では後述する部材間,部材-地盤間の滑り剥離要素の妥当 性の検証と構造系の基本的な動的挙動の把握を目的として,地盤を 線形として時刻歴応答解析を行った.

3.1 解析ケースおよび入力地震波

解析ケースは加振方向が横断方向と縦断方向の 2 ケースとした. 入力地震波は最大加速度が 100gal で 16 波長の正弦波を用いた.正 弦波の振動数は,各ケースの卓越振動数を用いた.

3.2解析モデル

図 3, 図 4 に解析モデルの横断図および縦断図をそれぞれ示す. カルバートは内空幅 9.50m,内空高さ 5.425m,覆工厚を 250mm とした.基礎部は深さ 2.75m,幅 10.1mのインバート構造とし, 内側に深さ 1.65mの路盤を設置した.地盤部はカルバート脚部か ら下方にそれぞれ層厚 4m, 4.5m, 6m で礫混じり粘土,玉石混じ り砂礫,細粒砂岩の 3 層構造とした.

図3 解析モデル横断図

キーワード 3 ヒンジアーチカルバート,動的解析,地震時挙動 連絡先 〒192-0397 東京都八王子市南大沢 1-1 TEL:042-677-2785 FAX:042-677-2772 盛土は、縦断方向に斜面を設け、勾配は1:2とした.

表1、表2に盛土・地盤およびカルバート・基礎部の物性 値をそれぞれ示す.なお盛土,路盤,地盤の減衰比は0.1と した.また、実際の地震時のカルバートの挙動を再現するた めに, 隣り合うアーチ部材間の滑り剥離を再現するばね要素 を用いた. 同様に, 盛土とアーチ部材の要素間にも滑り剥離 を再現するばね要素を用いた.

4. 解析結果

4.1 横断方向加振

図5に横断方向加振時のトンネル縦断方向中央部におけ る最大・最小の断面力図を示す. なお軸力および曲げモーメ ントともに周面方向の断面力である.

軸力および曲げモーメントともにアーチ肩部において卓 越していることが確認できる.

なお中央部以外の断面においても同様の結果が得られた.

4.2 縱断方向加振

図6にカルバート部材の面内変形による最大せん断力 Qxz のコンター図を示す. 脚部においてせん断力の卓越が確 認できる.また,図7にカルバートの面外変形による最大せ ん断力 Qzy を示す. クラウン部においてせん断力の卓越が 確認できる.これらは縦断方向の加振により、アーチ部材が 縦断方向に変形したことによると考えられる.

5. 考察

解析結果より,横断方向加振時にアーチ肩部において断面 力が卓越することが分かった.また,縦断方向加振時にアー チ部材の前倒れが発生し、クラウン部においてせん断力が卓 越することが確認できた.これらの解析結果より,アーチ肩 部では、トンネル横断方向の振動により盛土がせん断変形し、 その変形に追従することにより断面力が卓越すると考えら れる.アーチクラウン部ではトンネル縦断方向の振動により, 縦断方向に変形し、荷重が突合せ部の隅角部に集中すると考 えられる.

6. 結論および今後の課題

今回の解析により、アーチ肩部の地震時挙動はトンネル横 断方向の振動の影響が卓越する可能性があることが分かっ た. また, クラウン部の地震時挙動はトンネル縦断方向の振 動の影響が卓越する可能性があることが分かった.

今後は,実際の地震波を入射し,実際の地震発生時の断面 力や変形を調べる必要がある.

-442-

表1 盛土·地盤物性值

	G[MN/m²]	$\gamma [\ kN/m^3]$	ν	c[kN/m ²]	φ[deg]
盛土	18.5	18	0.35	20	35
路盤	27.8	19	0.35	20	37.5
tm-c	7.4	16	0.35	20	30
tm-g	18.5	18	0.35	20	35
Dsi	37	20	0.35	20	40

表2カルバート・基礎部物性値

	Ec[GN/m]	γ_{C}^{3}	ν	減衰比
カルバート	29.5	25	0.2	0.05
基礎	28	25	0.2	0.05

図6 面内せん断力[kN/m](縦断方向加振)

図7 面外せん断力[kN/m](縦断方向加振)