未凍結土の弾性係数のひずみ依存性を考慮した凍結凍上解析

北海道大学大学院工学院	学生会員	○神谷	遼多
北海道大学大学院工学研究院	フェロー	蟹江	俊仁
北海道大学大学院工学院	学生会員	鄭	好

1. はじめに

我が国は、地下埋設型 LNG タンクの建設をはじめ、 様々な工事への凍結工法の適用等を通じて、地盤の人 工凍結分野では世界でも先進的な役割を果たしてきた. 近年は、大都市の地下などでさらに高度で複雑な施工 技術が要求される上、福島第一原子力発電所における 遮水用凍上壁が注目されるなど、地盤の凍結をさらに 積極的に活用しようとする機運が高まっている.この ため、凍結凍上による周辺地盤と構造物との相互作用 に関する予測技術の重要性も一層増していると考える.

わが国では、凍上量と凍上力の評価には、高志の式 が広く用いられてきた.これによれば、凍上率は有効 拘束圧の関数として与えられ、有効拘束圧が高まれば 高まるほど、凍上率は低く評価される.もし、未凍結 土の弾性係数のひずみ依存性を考慮しなければ、凍上 による拘束圧力は凍上率に応じて増加するため、凍上 に伴って発生する有効拘束圧の増加が、却って凍上率 を低下させる傾向がある.一方、未凍結土の弾性係数 のひずみ依存性を考慮した場合、凍上による拘束圧力 はひずみレベルの上昇につれて低下する反面、凍上率 自体は上昇する結果となる.その結果、弾性係数のひ ずみ依存性が有効拘束圧と凍上率の増加や減少を複雑 に支配することとなり、凍結凍上評価に影響を与える こととなる.

そこで本研究では、未凍結土の弾性係数のひずみ依 存性を数値解析的に評価する手法を提案し、それが凍 結凍上評価に与える影響について検討を行った.

2. 解析手法

本研究では、熱流方向と凍結速度を評価する熱伝導 解析と、高志の式による凍上率を反映した凍結膨張解 析をカップリングした上で、弾性係数のひずみ依存性 については Duncan・Chang の変形係数式を採用した.

2.1 熱伝導解析

熱伝導解析は式 2.1 に示す熱伝導方程式に基づき行う.

$$\left[C\right]\left\{\frac{\partial\theta}{\partial t}\right\} + \left[K_{H}\right]\left\{\theta\right\} = 0 \qquad (\not \exists 2.1)$$

[*C*]:熱容量マトリックス, [*K_H*]:熱伝導マトリックス, θ :節点温度(\mathbb{C}), *t*:時間(hr)である.凍結に伴う潜熱の影響は等価比熱法により評価し、時間ステップの計算にはクランク・ニコルソン法を適用した.

2.2 凍結膨張量の推定

凍上量の推定には、式 2.2 の高志の式を用いる.

$$\xi = \xi_0 + \frac{\sigma_0}{\sigma} \left(1 + \sqrt{\frac{U_0}{U}} \right) \tag{\vec{x} 2.2}$$

σ: 凍結方向の拘束圧力, *U*: 凍結速度, ζ: 凍上率である. また, ζ₀, σ₀, *U*₀は対象土の材料特性のみに依存する固有値である.

2.3 高志の式の二次元拡張

高志の式は熱流方向のみの一次元的な凍上進行を想 定している.しかし、パイプなどの構造物の凍上問題 を取り扱うとき、熱流方向に垂直な方向にも凍上が進 行する. そこで, 凍結の異方性パラメータ *B*を導入する. *B*は式 2.3 のように定義される.

$$\xi_h = \frac{1}{1+\beta}\xi \qquad \xi_v = \frac{\beta}{1+\beta}\xi \qquad (\not \exists 2.3)$$

2.4 応力·凍上膨張解析

式 2.4 は凍上解析の基礎となる二次元力学平衡方程 式を表す.式 2.4 を有限要素式で離散化すると,式 2.5 が得られる.

$$\begin{cases} \frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + X = 0\\ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_x}{\partial y} + Y = 0 \end{cases}$$
(式 2.4)

$$[K_{s}]\{w\} - \{f_{t}\} = [f] \qquad (\exists 2.5)$$

[K_s]:剛性マトリックス, {w}:節点変位, {f_i}:温度 応力, {f}:外周拘束力である.

なお、温度応力の算出は次のように行う.まず、熱 伝導解析により凍結方向と凍結速度を求める.次に、 凍結方向の拘束応力 σ を熱膨張解析で求め、高志の式 から凍結膨張率を求める.この凍結膨張率と土の物性 より計算された値を式 2.5 に代入して温度応力を求め る.

2.5 土の弾性係数の変化の評価

本研究では、未凍結土の弾性係数変化を式 2.6 の Duncan・Changの変形係数式を用いることで考慮する.

$$E_t = \left(1 - R_f \frac{(1 - \sin \Phi)(\sigma_1 - \sigma_3)}{2c_u \times \cos \Phi + 2\sigma_3 \sin \Phi}\right)^2 E_i \qquad (\not \Xi 2.6)$$

 $E_i:$ 変形係数, $E_i:$ 初期弾性係数, Φ :内部摩擦角, $R_f:$ 破壊時応力と Konder の双曲線の近似値との比, $C_u:$ 非 圧密非排水試験により求めた見かけの粘着力である. また,凍結土の弾性係数は一定値を用いる.

3. 二次元パイプ実験との検証解析

非線形モデルの妥当性を確認するため、凍上性の高 いシルト層に冷却パイプを埋設した室内凍上実験結果 との比較を行った.

3.1 実験および解析モデル

実験は、凍上性の高いシルト層に直径 75mm のパイ プを埋設し、パイプ内を流れる不凍液で地盤を凍結凍 上させるものである.解析モデルにおいては、その対 称性から実験模型の片側半分を解析対象とし、図 1 に 示 す境界条件を与えた.モデルの外形寸法は 500mm×250mm であり、解析時間も実験と同じく 120 時間とした.なお、 $\beta=0$ と仮定し、その他の主な物性値 は表 1 に示す通りである.

3.2 解析結果と考察

フロストバルブの比較を図 2 に,パイプ上面から 45mm 地点の凍上量比較を図 3 に示す.これらの結果よ り,フロストバルブの形状も,また凍上量についても 概ね妥当に評価されているものと考える.特に凍上量

キーワード 凍上,応力ひずみ曲線,非線形,Duncan and Chang,高志の式,有限要素法 連絡先 〒060-8628 北海道札幌市北区北13条西8丁目 北海道大学大学院工学院 TEL011-706-6177 の評価においては、従来の線形モデルがやや過大な評価を与えるのに対し、非線形モデルの実験値との整合性は極めて良いことがわかる.

⊠ -1 ·	モデル概要図
表-1	物性値一覧

物性値名	粘土層(MZ kaolin)	埋設パイプ(アルミ)	砂層(豊浦標準砂)	
$E[N/m^2]$	2.8×10 ⁸	7.0×10 ¹⁰	2.8×10 ⁸	
ν	0.2	0.33	0.2	
$ ho [kg/m^3]$	1930	2700	1550	
C [J/(kgK)]	1005	913	1005	
k [J/(smK)]	1	2.56	1	
w	0.5	0	0.25	
<i>šo</i>	0.05	0	2.79×10 ⁻²	
U _o [m/s]	4.431×10 ⁻⁷	0	0	
$\sigma_{O} [\text{N/m}^{2}]$	4563	0	0	

Time (hr)

非線形モデルの信頼性が確認されたところで、未凍 結土の弾性係数のひずみ依存性がどの程度凍結凍上評 価に影響するのかを調べるために、より現実に近いシ ンプルな例として埋設式ボックスカルバートを想定し、 構造物に作用する応力分布や地表面凍上量分布の比較 を行った.

4.1 解析モデル

150

Frost Heave (mm) 00 00

41

本モデルも左右対称性を考慮して片面を解析対象範囲とし,図4に示すモデルを設定した.解析時間は1 シーズンを想定して90日とし、モデル全体の初期温度 を5℃、カルバート内部および地表面温度は外気を想定 して正弦関数に従い0℃から-20℃になるようにした. 各物性値を表2に示す.

4.2 解析結果と考察

解析モデル右側面に作用する水平応力の比較を図 5 に,解析モデル底面に作用する鉛直応力の比較を図 6 に示す.どちらのグラフを見ても、非線形モデルの場 合の方が応力値は小さくなっており、従来の線形モデ ルでは、応力を過大評価していることになる.従って、 経済性の観点から、未凍結土の弾性係数のひずみ依存 性の影響は大きいと言える.また、応力の最大値の位 置についても違いがあることが分かる.応力を過大評 価しているということは、安全側に見込むことになる ので設計上問題ないように思われるが、応力の最大値 の位置が異なることもあり、未凍結土の弾性係数のひ ずみ依存性を考慮することは重要と考える.なお、紙 面の都合上凍上量分布の図は示さなかったが、線形モ デルよりも大きな凍上量が予想された非線形モデルは、 凍上量の予測においても小さな結果を与え、応力や変 形の評価に大きな影響を与えることが確認された.

図-6 モデル底面の鉛直応力の比較

5. まとめ

120

本研究では、未凍結土の弾性係数のひずみ依存性を 評価する手法を提案し、二次元室内試験との比較等を 通じてその有効性が検証された.また、実構造物への 適用を意識したサンプル解析では、応力分布や凍上量 分布への影響が顕著に表れ、ひずみ依存性を考慮した 解析手法の重要性が確認された.

参考文献

- 牧村美智代,蟹江俊仁,横井崇志:二次元練成凍上解析による 地中埋設構造物の挙動評価,土木学会年次技術講演会講演概要 集(CD-ROM)Vol.66,2011)
- Zheng Hao, Practical Evaluation for Interactive Behavior between Structure and Two-dimensional Frost Heave, Graduate School of Engineering Hokkaido University, Master's Thesis No.EG-M92, 2011
- 3) 木下誠一: 凍土の物理学, pp1-57, 森北出版, 1982