その1:遠心実験

(株)大林組 正会員 〇天満 知生 永井 秀樹 堤内 隆広 樋口 俊一

1.はじめに

臨海部の埋立て地盤上に建設されるプラント設備 等の重要施設を支持する基礎には,サンドコンパク ション等の液状化対策を行うとともに,大規模地震 に備えて杭基礎が採用される場合が多い。杭基礎を 採用した場合,大規模地震時の鉛直および水平方向 の荷重を杭のみで支持する設計となるため,多数の 杭を配置しなければならないケースがある。

杭と基礎版の両方に荷重分担を期待する基礎(以 降,複合基礎)の考え方を取り入れ,基礎の合理化 を図ることを目的として,杭と基礎版を接合する杭 頭接合基礎,杭と基礎版を接合しない杭頭非接合基 礎,さらに基礎版周囲にスカート(キッカー)を追 加したスカート付き基礎について,縮小模型による 遠心実験を実施し,その有効性について検証を行っ た。本報(その1)では,実験の概要およびその結 果について報告する。続報(その2)では,数値解 析的な検討結果を示す。

2.遠心実験の概要

連絡先

遠心実験は,長さ1,950mm,幅800mm,深さ565mm のせん断土槽内に1/50模型を作成し,当社技術研究 所の遠心装置(写真-1)を用いて,50gの遠心場におい て加振実験を行った。

写真-1 遠心装置

入力地震波は,ポートアイランド基盤NS成分を使用し,目標加振レベルに応じて加速度振幅を調整した。目標加振レベルは,加振の順番に50gal,150gal,

キーワード プラント施設,複合基礎,遠心実験,液状化

300gal, 500galとした。

模型地盤は,下層側から支持層(非液状化層,杭 根入部),液状化層,表層(非液状化層)の3層とし た。支持層は,N値30程度の中間支持層を想定し,4 号珪砂を100%の相対密度となるように締固めて作成 した。液状化層は,300gal以上の入力地震波では層 全体が液状化するように,7号珪砂を70%の相対密 度となるように締固めて作成した。

基礎形式は図-1 に示す3種類とした。ケース と は,基礎版下面に土嚢を敷く構造とし,土嚢は合 成繊維を長い袋状に加工し,7号珪砂を充填した後, 加振方向に対して直交する方向に設置した。

遠心載荷では,杭と基礎版下面の両方で荷重を分 担するように,地盤のみで遠心載荷を実施し,地盤 を締固めた後,遠心載荷を一旦終了して構造物を設 置し,再度遠心載荷を実施することによって初期状 態場を再現した。

3.実験結果

(1)応答加速度,応答水平变位

150gal および 300gal の地震動を入力した際,地表

-056

〒108-8502 東京都港区港南 2-15-2 品川インターシティ B棟 TEL 03-5769-1307 FAX 03-5769-1972

の応答加速度および構造物の応答加速度と応答水平 変位の結果を図-2 に示す。液状化発生前の応答値 (150gal)では,応答加速度について,ケース がケ ース および に比較して小さい値を示した。応答 水平変位について,全ケースでほぼ同じ値を示した。

液状化発生後の応答値(300gal)では,応答加速 度について,全ケースでほぼ同じ値を示した。応答 水平変位について,ケース が小さい値を示した。

(2)杭の鉛直および水平荷重分担率

杭の鉛直荷重分担率を,遠心載荷開始から 50g 到 達までの間に発生した杭の軸ひずみから算出した (表-1)。ケース は,ケース と に対して大きい 荷重負担率を示した。ケース と は,杭頭と基礎 版が接続されていないことから,鉛直荷重の一部は, 地盤内に分散していることが分かる。

	軸ひずみによる値	土圧計による値	
ケース	75%	63%	
ケース	36%	-	
ケース	49%	-	

表-1 杭の鉛直荷重分担率

杭の水平荷重分担率については,構造物の質量に 応答加速度を乗じた全水平力に対して,杭上部の2 か所のひずみゲージから算定した杭頭の水平せん断 力の割合を求めた(表-2)。鉛直方向と同様,ケース がケース と に対して大きい荷重分担率を示し た。ケース と では、地盤の液状化後においても、 2割程度の負担であり、水平せん断力の多くは、基礎 版下面が負担していることが分かる。

表-2 杭の水平荷重分担率

	入力最大加速度(gal)				
	50	150	300	600	
ケース	16.2%	46.0	100%	100%	
ケース	9.7%	10.9%	22.2%	22.7%	
ケース	4.0%	2.1%	9.6%	16.0%	

(3)残留変位

残留鉛直変位を図 -3に示す。ケース との残留鉛直変位 が地表面沈下量より も小さくなっている ことが分かる。少な い杭本数においても, 基礎の残留鉛直変位 を抑える効果がある ことを確認できた。 残留水平変位を図 -4に示す。ケース

~ で,最大約1mm(実物

大で約 5cm)の残留変位になることが分かった。ケース で残留鉛直変位が大きくなる一方で,残留水平 変位が小さくなっていることから,杭頭部の突出具 合が残留水平変位に影響しているものと考えられる。

4.まとめ

縮小模型による遠心実験によって,複合基礎のそ れぞれのケースについて鉛直ならびに水平方向の荷 重分担率を確認できた。

レベル2地震に相当する 500gal の入力地震動時に 液状化した地盤で,杭頭部が突出する状態(杭接合 基礎において基礎版下面の反力がなくなる状態)に おいても,ケース ~ の残留水平変位は,実物大 スケールで約 5cm に収まることが確認できた。

ケース と における杭の水平荷重分担率および 残留水平変位の差異については, 土層のバラツキ等 の影響もあり,遠心実験結果による検証は難しいた め,続報(その2)において解析的検討結果を示す。