地下水位低下工法を適用した遠心模型実験のシミュレーション解析 (その3 2次元動的有効応力解析)

大成建設㈱ 正会員 〇原 祐介 正会員 広重 敬嗣

正会員 小林 真貴子 正会員 立石 章

1. 研究の背景と目的

東北地方太平洋沖地震をきっかけに、広域に適用でき、かつ安価な液状化対策が求められている.地下水位低下 工法は、既存の設備や建物による施工上の制約を受けにくく、広域を対象とした経済的な工法であるため、注目を 集めている.本報では、立石ら¹⁾によって実施された遠心模型実験を、2次元動的有効応力解析法 LIQCA2D²⁾によ りシミュレーションしたので報告する. 表1 検討ケース

2. 解析条件

検討モデルとしては、図1に示す平面ひずみ要素による 2次元モデルとし、遠心模型実験によって想定されている 地盤および構造物を実物換算してモデル化した.検討ケー スを表1に示す.遠心模型実験については立石ら^{DD}を参照 されたい.実験の対象地震動は、図2に示すように、今後 の耐震設計の対象となる機会が多いと考えられる南海トラ フ地震よる名古屋港の基盤波を選定し、解析においては、 各ケースの遠心模型実験の剛土槽底面において計測された 水平加速度を入力地震動とした.

地盤の構成モデルは、地下水位以深の液状化層、以浅の 非液状化層ともに、繰返し弾塑性モデルである.解析に用 いる地盤物性値と弾塑性パラメータの値を表 2 に示す.地 盤のせん断剛性は、広重ら³⁾と同様に、豊浦砂に対する全 国一斉試験結果による推定式から算出した初期せん断剛性 を用いた.弾塑性パラメータは、豊浦砂に対して中空ねじ りせん断試験を実施している Tatsuoka et al.⁴⁾に基づいて目 標とする液状化強度曲線を設定し、要素シミュレーション を行うことによって決定した.

3. 解析結果

各ケースの沈下量を比較するために,遠心模型実験, LIQCA による解析, ALID による静的残留変形解析³⁾のそ れぞれにおける地盤中央での地表面沈下量の一覧を表 3 に 示す.ここに,LIQCA による解析結果のうち,流動沈下量 は加振中 120 秒間に発生した沈下量,消散沈下量は加振終 了から圧密完了までの沈下量とした.

LIQCA における地盤中央の沈下量は、すべてのケースで 遠心模型実験に比べて大きく算出されている.そのうち、

Caes2-2

Case2-3

Case2-4

Case2-1

図2 南海トラフ地震による名古屋港の基盤波

表2 地盤物性値・弾塑性パラメータ

		液状化層	非液状化層	
密度	ρ (g/cm ³)	1.88	1.58	
透水係数	k (m/sec)	2.50E-05		
圧縮指数	λ	0.0034		
膨潤指数	κ	0.00034		
疑似過圧密比	OCR*	1.0		
無次元化初期せん断係数	G_0/σ'_{m0}	1964		
変相応力比	$M^*{}_m$	0.91		
破壊応力比	M_{f}^{*}	1.34		
硬化関数中のパラメータ	B* ₀	8000		
	B* 1	73.0		
	C_{f}	0.0		
異方性消失パラメータ	C_d	2000		
ダイレイタンシー係数	D_{θ}^{*}	1.0		
	п	4.6		
塑性基準ひずみ	γ^{P*}_{r}	0.001	99999	
弾性規準ひずみ	$\gamma^{E*}r$	0.005	9999	

キーワード 液状化,地下水位低下工法,有効応力解析

連絡先 〒163-0606 東京都新宿区西新宿 1-25-1 大成建設㈱土木設計部 TEL 03-5381-5418

-014

流動沈下量は, Case2-3 では 190cm, Case2-4 では 40cm と なった. つまり, 地下水位を下げることで流動沈下量は 5 分の1程度に抑えられており、遠心模型実験より沈下抑止 効果が大きく表れている.また, Case2-4の LIQCA と遠心 模型実験による地表面の流動による鉛直変位分布図を図 3 に示す. 地盤中央での実験結果と解析結果に 3.3 倍の差が あるものの、変形のモードとしては概ね再現できている.

一方, LIQCA における消散沈下量は, Case2-1 と Case2-2, Case2-3 と Case2-4 の比較から, 地下水位を下げた Case2-2 ※ () 内は, 遠心模型実験の沈下量を1とした場合の比率である. と Case2-4 の方が,実験結果の再現精度が高くなっている.

遠心模型実験と LIOCA における地盤中央の過剰間隙水 圧比の時刻歴を図4,図5に示す.実験は図2中の70秒時 から急速に上昇しているが、LIOCA では、振動開始直後か ら緩やかに過剰間隙水圧の上昇が生じている.また,LIQCA において、過剰間隙水圧の消散に要する時間が実験に比べ て 5~8 倍程度となっており,解析においては,液状化によ って低下した地盤の剛性が過剰間隙水圧消散過程で回復し ないことが、消散時間が長くなる原因と考えられる.

4. 静的残留変形解析(ALID)との比較

流動沈下量について, 広重ら³⁾による ALID の結果との比 較を行う(表3参照). Case2-3 では、杉野ら⁵⁾による指摘 のとおり、液状化層の F_L 値が 0.6 より小さいため、ALID による流動沈下量が過大に求められ, LIQCA よりも大きく なったものと考えられる.これに対し、地下水位を低下さ せた Case2-4 では, ALID に比べて LIQCA の方が大きくな っている.これは、杉野ら ⁵⁾の指摘のように、F_L 値が 0.6 を上回ると ALID の計算精度が上がる一方、対象地震動の 継続時間の長さが考慮される LIQCA の方が結果的に大き くなったものと推察される.

5. まとめ

地下水位低下工法を模擬した遠心模型実験を,2次元動的有効応力解析 LIQCA を用いてシミュレーション解析を 行った結果,以下の点が確認された.

- ・LIQCA では、実験に比べて、流動沈下量、消散沈下量ともに大きめに求められていることから、液状化した土 の剛性の評価が課題と考えられる.
- ・LIQCA による解析においても、遠心模型実験と同様に、地下水位低下による対策効果を確認できた.
- ・LIQCA と ALID の流動沈下量の違いは、杉野ら⁵⁾による既往の研究と同様な結果となった.

参考文献

1)立石・小林:地下水位低下工法の沈下量抑制効果に関する遠心模型振動実験(その 2),第 49 回地盤工学研究発表会,2014. (投稿中)2)一般社団法人 LIQCA 液状化地盤研究所: LIQCA2D13・LIQCA3D13(2013年公開版)資料,平成25年11月13日. 3)広重他:地下水位低下工法の遠心模型実験のシミュレーション解析(その1 2次元静的残留変形解析),第69回年次学術講演 会,2014. (投稿中) 4) Tatsuoka, F., Ochi, K., Fujii, S., and Okamoto, M.: Cyclic undrained triaxial and torsional shear strength of sands for different sample preparation methods. Soils and Foundations, 26.No.3. pp.23-41. 1986. 5) 杉野・河合: 東海・東南海連動地震を対象と した木曽三川下流部の耐震性能評価について、全地連「技術フォーラム 2010」那覇、2010.

表 3 地盤中央における地表面沈下量

単位:cm	遠心模型実験		LIQCA		ALID	
	流動沈下量	消散沈下量	流動沈下量	消散沈下量	流動沈下量	消散沈下量
Case2-1	-	12	-	23 (1.9)	-	24 (2.0)
Case2-2	-	11	-	18 (1.6)	-	16 (1.5)
Case2-3	33	6	190 (5.8)	23 (3.8)	535 (16.2)	22 (3.7)
Case2-4	12	8	40 (3.3)	18 (2.3)	7 (0.58)	17 (2.1)

※遠心模型実験の沈下量は、地盤中央または構造物上における計測 値の平均である.

過剰間隙水圧比時刻歴(LIQCA) 図 5