鋼矢板2重壁の津波越流に対する堤防補強効果に関する水理実験

東北大学 正会員 〇三戸部 佑太, Mohammad Bagus Adityawan, 盧 敏, 田中 仁 新日鐵住金株式会社 正会員 乙志 和孝, 黒澤 辰昭

1. はじめに

2011 年の東日本大震災津波による海岸堤防の多大な被害を受けて、最大クラスの津波により越流が生じる 場合でも全壊せずに粘り強く効果を発揮できる海岸堤防の構造を検討することは重要な課題として認識され ており、津波の越流による堤防破壊メカニズムおよびその対策工に対する検討が進められてきている¹⁾²⁾.本 研究では裏法面が破壊されるような大規模な被災を生じる場合でも堤防機能を維持する構造として、鋼矢板2 重壁による堤防補強構造の効果について検討を行う(図-1).鋼矢板2重壁構造は地震による液状化発生時に おいても堤防の天端高を確保し堤防機能を維持する構造として提案され、集中豪雨等により生じる大規模な洪

水により計画水位を超える高水位となる場合において も河川堤防の天端高を維持可能な構造として検討され ている³⁾.この構造は鋼矢板壁を2重に設置し,その 頭部をタイ材により接合することで,矢板2重壁とそ の間の地盤の複合構造を構成し堤体を補強するもので あり,大規模な津波越流により裏法面が破壊された場 合でも堤体の倒壊を抑止し堤防機能を維持する構造と して期待できる.本論では矢板2重壁模型を用いた水 理実験を行い,越流条件下での堤体および矢板挙動に ついて調査を行った.

2. 実験方法

延長 450cm,幅 15cmの水平勾配の開水路中に,平均 粒径 0.3mmの硅砂を用いて縮尺 1/50の堤防模型を作製 し、一定流量下での堤体形状の変化を側方からビデオ カメラで撮影した動画像から取得した.実験条件を表 -1に示す.堤体中に鋼板(板厚 1.6mm)およびタイ材 を使用した矢板 2 重壁模型を設置し、同様に動画像か らその変位を取得した.また矢板両面に設置したひず みゲージにより矢板に生じるひずみを計測した.ただ し、本実験は津波越流により堤防裏法面が破壊される 場合においての鋼矢板 2 重壁構造の効果を確認するこ とを目的とするため、コンクリートブロック等による 堤体の被覆は行わず実験を行った.

3. 結果

実験時の撮影画像および撮影画像から取得した堤体 及び矢板の形状を図-2および図-3に示す.無対策の場 合,越流開始直後から急速に堤体全体が浸食され,実 験終了時(越流開始から85秒後)にはほぼ完全に堤体

キーワード 海岸堤防, 矢板, 津波, 越流, 水理実験

図-1 鋼矢板2重壁構造による堤防補強

表-1 実験条件(括弧内は現地換算値)

case	構造	堤防天端高 H	越流水深 h	越流継続時間 T				
1	無対策	15cm (7.5m)	10cm (5m)	85sec (10min)				
2	2重壁	15cm (7.5m)	10cm (5m)	85sec (10min)				

凶-2 無対策構造の超流開始時のよび超流後(実験: 65 秒後, 現地換算: 10 分後)の撮影画像(上)および 取得した底面形状(下: 細線)と矢板形状(下: 太 線). 線の色は時刻を示す(青→赤). 越流継続時 間(85 秒)の 1/12 毎の結果

連絡先 〒980-8579 仙台市青葉区荒巻字青葉 6-6-06 東北大学大学院工学研究科 TEL 022-795-4916

が流出している.一方, 矢板 2 重壁構造では越流開始 後裏法面の洗掘が進むとわずかに矢板壁に転倒を生じ るものの, 矢板背後の地盤高が基礎地盤高(図中 z=0) に近づいても倒壊には至らず天端高を確保しているこ とがわかる.実験終了時の 2 重壁構造の堤防高さの低 下量は 0.3cm 程度, すなわち初期天端高の 2%程度であ り,堤防高さの有意な低下は生じていない.また撮影 画像から堤体鉛直断面の断面積を取得し,その初期値 からの減少量 ΔA を表-2 に示している(図-3 中段参照). 裏法面および 2 重壁間(天端部分)の洗掘により多く の土砂が流出するものの,その流出量は堤体の大部分 が流される無対策の場合と比較して小さい.

図-4 は矢板に設置したひずみゲージにより計測した 越流後のひずみを示している. すべての計測点で矢板 の両面でのひずみの絶対値が概ね一致しており、曲げ 変形を生じていることがわかる. 上流側の矢板は矢板 頭部のタイ材を通して下流側矢板から引張力を受ける ため, 矢板上流側の面に引張, 下流側の面で圧縮とな る方向に変形が生じている.一方で、下流側の矢板は 矢板前後における地盤高の差による土圧合力および矢 板頭部の露出により直接作用する流体力により下流向 きの力が大きく作用するが、頭部のタイ材を通した上 流側矢板からの支持力により上流側矢板と逆方向の変 形が生じている. またすべての計測点において計測さ れたひずみは鋼矢板の降伏ひずみより十分小さく、矢 板が降伏に至る前に地盤の支持力の限界を超え転倒を 生じたことがわかった.このことは裏法面の洗掘後の 根入れ深さの残存量が2 重壁の転倒開始限界および転 倒量に強く影響することを示している. 今後根入れ深 さを変えた実験を行い、適切な根入れ深さについて検 討を行う必要がある.

4. おわりに

水理模型実験を通して矢板2重壁構造による堤防補 強の津波越流に対する効果を検討し、その粘り強い構

図-3 2 重壁構造の越流開始時および越流後(実験:85 秒後,現地換算:10 分後)の撮影画像(上)および 取得した底面形状(下:細線)と矢板形状(下:太 線).線の色は時刻を示す(青→赤).越流継続時 間(85 秒)の 1/12 毎の結果

表	-2 実験結果(実験結果(括弧内は現地換算値)				
0000	堤防高さ低下量		<u> </u>			
Case						

	ΔH	∆H/H	ΔA	$\Delta A/A_{e}$
1 (無対策)	12.4cm (6.2m)	0.83	415cm ² (104m ²)	0.80
2 (2重壁)	0.3cm (0.15m)	0.02	296cm ² (74m ²)	0.57

造としての有用性を明らかにした.今後より多様な条件での実験を行い,根入れ深さによる転倒量への影響等 を評価し,適切な矢板壁諸元について検討を行う.

参考文献

- Kato et al.: Mechanism of coastal dike failure induced by the Great East Japan Earthquake Tsunami, Proc. of 33rd Int. Conf. on Coast. Eng., 9 pages, 2012.
- 三戸部ら:津波越流により生じる海岸堤防裏法尻の洗掘現象に関する実験,土木学会論文集 B1(水工学), Vol.70, No.4, pp. I_1147-I_1152, 2014.
- 3) 乙志ら: 鋼矢板を用いた堤防の補強に関する実験的研究, 地盤工学ジャーナル, Vol.6, No.1, pp.1-14, 2011.