不規則波による傾斜護岸への代表打上げ高さに関する検討

東北工業大学	学生	E員	○斎藤	裕平
東北工業大学	Æ	員	高橋	敏彦

1. はじめに

加藤ら¹⁾は、不規則波実験による代表打上げ高さが Longuet-Higgins による代表波高間の関係²⁾にほぼ従うことを 示している。そこで本研究は、Longuet-Higgins が示した代表波高間の関係式を用いて代表打上げ高さを求め、実験 値と詳細に比較検討する。次に、波の打上げ高さに関する設計指針の一つとして用いられている改良仮想勾配法³⁾ と実験値を比較検討する。更に、規則波を対象としている改良仮想勾配法を用いて R_{1/3} (1/3 最大打ち上げ高さ)を 基準に Longuet-Higgins が示した関係より、不規則波の代表打上げ高さを推定する方法を検討する事を目的とした。

2. 実験条件及び実験方法

前報⁻¹において報告しているので、要約して記述する。水路には合板で 1/20 勾配を作成し、その上に模型堤体を設置した。模型堤体の法勾配は、1/3 勾配とした。実験は、一様部水深 h=24.4~44.0cm、有義波周期 $T_{1/3}=1.34s$ 、有義波波高 $H_{1/3}=1.0~10.0cm$ 、相対水深 hi(堤体のり先から鉛直上方を+、下方を-とした)/ L_0 (沖波波長)=-0.02~0.05 迄の0.01 刻みに 8 ケースである。表-1 に実験条件を示す。

実験	No.	T1/3 (sec)	H1/3 (cm)	hi (cm)	hi/Lo	h (cm)
8 8 1/3 8 43配 8 8 8 8 8 8 8 8 8 8	B-1	1.34	1.0 ~ 10.0	-5.60	-0.02	24.40
	B-2			-2.80	-0.01	27.20
	B-3			0.00	0.00	30.00
	B-4			2.80	0.01	32.80
	B-5			5.60	0.02	35.60
	B-6			8.40	0.03	38.40
	B-7			11.20	0.04	41.20
	B-8			14.00	0.05	44.00

3. 検討結果及び考察

3-1. 代表打上げ高さの実験値とLonguet-Higgins が示した代表波高間の関係式を用いた代表打上げ高さの比較

前報¹⁾は、波の代表打上げ高さ間の関係も代表波高間の関係 にほぼ従うことを示している。今回は、Longuet-Higgins による 代表波高間の関係を用いて、代表打上げ高さを推定する。すな わち、波高 H を波の打上げ高さ R に置き換えて検討する。表-2 は Longuet-Higgins による不規則波の代表波高間の関係をまと めたものである。例えば R_{mean}を例にとると、H_{mean}= $0.625 \cdot H_{1/3}$ の関係から R_{mean}= $0.625 \cdot R_{1/3}$ を得る。

図 -1(a),(b) は、 1/3 勾配において相対水深 hi/L₀=0.00~0.05の範囲で、 $R_{2\%}$ の代表打上げ高さの実験値 を横軸に、表-2の関係式を用いた計算値を縦軸にプロッ トし比較したものである。縦軸の計算値は、それぞれ R_{mean} 及び $R_{1/3}$ を基準として求めた値であり、図中の破線 は誤差 25%を示している。両図より、ほとんどのケース で誤差が 25%以内となっており、良く対応しているもの と思われる。ただし、 (b)の $R_{1/3}$ を基準として計算した 方が、 (a)の R_{mean} を基準とした値よりもばらつきは小さ くなっていることが認められる。紙面の関係上 $R_{2\%}$ のみ 示しているが、他の代表打上げ高さ共 $R_{1/3}$ を基準にした 場合の方が、 R_{mean} を基準にした場合よりばらつきは幾分 小さくなっている。

表-2	Longuet-Higgins	によ	ろ	代表波高間の関係	式
~ ` =			~		-

	Hmean	H1/3
Hmean	1.00	0.625
H1/3	1.60	1.00
H1/10	2.03	1.27
H2%	2.24	1.40
Hmax	2.45	1.53

キーワード:不規則波、波の代表打上げ高さ、Longuet-Higgins、改良仮想勾配法、傾斜護岸 〒982-8577 仙台市太白区八木山香澄町 35-1 東北工業大学 工学部 都市マネジメント学科 TEL:022-305-3539 FAX:022-305-3501

3-2. 改良仮想勾配法による波の打上げ高さと代表打上げ高さの実験値との比較

規則波を対象としている改良仮想勾配法の打上げ高さ R(改)と不規則波の代表打上げ高さの実験値 $R_{1/3}$ の関係を 求める。図-2は、相対水深 hi/L₀=0.00~0.05の範囲で hi/L₀ をパラメータとして、改良仮想勾配法による打上げ高さ R(改)を横軸に、代表打上げ高さの実験値 $R_{1/3}$ を縦軸にプ ロットしたものである。図より、hi/L₀=0.00は Ratio=1.0 付近に分布しているが、hi/L₀=0.01~0.05 は Ratio=2.0 付 近に分布しているのが認められる。これは、hi/L₀=0.00 では規則波の R と不規則波の $R_{1/3}$ はほぼ対応しているが、 hi/L₀=0.01~0.05 になると不規則波の $R_{1/3}$ の方が規則波の R の 2 倍程度の値になることを示している。そこで、hi/L₀

毎の $R_{1/3}$ と $R(\mathfrak{G})$ の関係を求める。図-3 は、相対水深 hi/ L_0 =0.03 のケース で、改良仮想勾配法による打上げ高さ $R(\mathfrak{G})$ を横軸に、代表打上げ高さ の実験値 $R_{1/3}$ を縦軸にプロットした一例である。図より、 $R_{1/3}$ は $R_{1/3}$ =a・ $R(\mathfrak{G})^b$ の関係で示すことができる。相関係数も高く、良く対応してい ると思われる。各 hi/ L_0 毎に、上記と同様に回帰曲線を求め、関係式を示 したのが表-3 である。相関係数はいずれも 0.97 以上となっている。

3-3. 改良仮想勾配法を用いた不規則波の代表打上げ高さの検討

規則波を対象とした波の打上げ高さ R を求める改良仮想勾 配法を用いて、不規則波の代表打上げ高さ R_x を求める。図-4 は、改良仮想勾配法で求めた R(改)を表-3 を用いて計算した $R_{1/3}$ と実験値 $R_{1/3}$ の関係を、相対水深 h/L_0 をパラメータとし てプロットしたものである。図-5~7 は、図-4 と同様に $R_{1/3}$ を 求め、Longuet-Higgins が示した代表波高間の関係式である表 -2 を用いて R_{mean} 、 $R_{1/10}$ 、 $R_{2\%}$ の計算値と実験値の関係を示し たものである。図より、ほとんどのケースが Ratio=1.0 付近に 分布しており、良く対応していることが分かる。これらのこ とから、規則波を対象とした改良仮想勾配法を用いて不規則 波の代表打上げ高さを推定することができると思われる。

4. あとがき

代表打上げ高さの実験値と Longuet-Higgins による代表波 高間の関係式を用いた代表打上げ高さの比較を検討した結果、 実験値と計算値の誤差は 25%以内を示しており、良く対応し ている。改良仮想勾配法と実験値については hi/L₀=0.00 では

改良仮想勾配法 R(改)の関係

hi/Lo	R1/3=a {R(改)}^b
0.00	R1/3=1.02 • {R(改)}^1.02
0.01	R1/3=3.64 • {R(改)}^0.67
0.02	R1/3=1.21 • {R(改)}^1.23
0.03	R1/3=1.14 {R(改)}^1.21
0.04	R1/3=0.45 • {R(改)}^1.64
0.05	R1/3=0.53 {R(改)}^1.53

規則波の R と不規則波の $R_{1/3}$ はほぼ対応しているが、 $hi/L_0=0.01\sim0.05$ になると不規則波の $R_{1/3}$ の方が規則波の R の 2 倍程度の値になることを示した。規則波を対象とした波の打上げ高さ R を求める改良仮想勾配法を用いて、不規 則波の代表打上げ高さ R_X を求める方法を Longuet-Higgins による代表波高間の関係式を用いて示した。

参考文献

加藤悠司・高橋敏彦・新井信一:傾斜護岸への相対水深を考慮した波の打ち上げ高さの一推定法,海岸工学論文集 第 53 巻(2), pp721-725,2006.
Longuet-Higgins, M.S:On the statistical distributions of sea waves, Jour. Marine Res., Vol.XI, No.3, pp.245-266,1952.
中村充・佐々木泰雄・山田譲二:複合断面における波の打ち上げに関する研究, 第 19 回海岸工学講演会講演集, pp.309-312,1972.