-609

腐食した溝形鋼および山形鋼の圧縮挙動に関する一考察

新日鐵住金(株) 正会員 〇久積 和正 冨永 知徳 今福 健一郎 菅野 良一

1. 目的

近年,構造物の老朽化に伴う事故や損傷事例が多く報 告されており,その構造物を構成する部材レベルでの健全 性を正しく把握することは維持管理上の重要課題の一つと なっている.しかしながら,外部環境に晒されることが多い 産業用鋼構造物に用いられる溝形鋼や山形鋼が腐食した 場合の耐力評価法に関する研究例は限られている.これま でに腐食した溝形鋼および山形鋼の中心軸圧縮試験を実 施し,最小断面積と最大耐力に一定の関係があることが把 握できたが^[1],最大耐力に至るまでの詳細な挙動や最大耐 力を決定した座屈モードなどのメカニズムは理解できてお らず,腐食部材の座屈現象についての精緻な分析ができ ていないのが現状である.そこで,本論文では,腐食形状 を詳細に反映したFEMモデルにより,腐食した溝形鋼や山 形鋼の圧縮時における力学挙動を明らかにする.

2. FEMによる再現解析と座屈モード分析

2.1 FEMモデル概要

FEM モデルには3次元レーザー変位計から得た1mmピッチの幾何情報を基に,数値計算の効率性の観点から, 10mm サイズのシェル要素を基本として解析することとした. また,各要素の板厚は一定としており,1mmピッチで与えら れる板厚データを平均化して与えた(図1).なお,初期た わみや残留応力を導入していない.これは,計測データに は部材軸や板厚軸の局部的な変化や初期たわみが含まれ ていることによる.解析には汎用有限要素解析コード MARCを用い,応力-Oずみ関係は完全弾塑性とした.

本検討では、実験^[1]に用いた全ての試験体を対象として、 大別して2種類の解析を行った.第1の解析ケースは実験 の再現解析であり、実験と同じ両端固定の境界条件を適用 した解析である.第2の解析ケースは座屈モードを判定す るためのものであり、第1のケースに対して全体座屈が生じ ないように部材軸直角方向の変位を仮想的に追加拘束し たものである.第2のケースの耐力が第1のケースのそれよ りも大きければ、全体座屈モードが耐力を支配したことを意 味し、第1と第2のケースの耐力が大きく変わらない場合に

キーワード:座屈,腐食部材,溝形鋼,山形鋼,FEM 連絡先:〒293-8511 千葉県富津市新富 20-1 新日鐵住金(株) TEL:0439-80-3086 FAX: 0439-80-2745 は,局部座屈あるいは断面塑性化が耐力を支配したことを 示す.第2のケースで導入した拘束条件を図2に示す.断 面内の板要素の接合点と自由端において,局部座屈の発 生を阻害しない程度に,板要素幅の5倍間隔で部材軸直 角方向の変位を拘束した.

2.2 FEMの妥当性検討

表 1 には実験と解析の結果一覧を示すが、両者は比較 的明確な対応を示しており、解析は総じて良好な精度を持 つ.ただし、最大耐力が小さい範囲での精度は必ずしも良 くない.これは、図 1 に示した板厚の平均化操作の影響で あり、要素寸法よりも小さな孔食を有する試験体ではその 孔食を表現できないことに起因する.よって、いくつかのケ ースではモデル化上の問題により実挙動を正しく模擬でき ていないため、ここでは実験値/解析値が±10%以下となっ たケースを、実挙動を妥当に評価したケースと見みなすこと とする.これに該当した 17 ケース(表 1 中の(1)/(2)の値が 0.9~1.1 の範囲にあるケース)のみを用いて、座屈モードの 詳細な検討を進めることとした.

2.3 座屈モードの分析

表1の(3)の欄には、妥当な評価を与えていると判断した 17 ケースに対して部材軸直角方向の変位拘束を与えた結 果を示す.表1の(3)/(2)の欄の値は変位拘束の有無による 耐力比を示したものである.本検討では、表1の(3)/(2)の値 が1.1以上のケースを「全体座屈」、それ以外で実験におけ る $\sigma_{max}/\sigma_y(\sigma_{max}:座屈応力度=実験での最大荷重/最小断$ $面積、<math>\sigma_y$:降伏応力度)の値が概ね1以上のものを「全断面 降伏」、残りを「局部座屈」とみなした.また、局部座屈の発 生時点と位置を特定するために、板要素の表裏のひずみ

差に着目し、FEM モデルのいずれかの節点において表裏 の平均ひずみ ϵ_{ave} に対するひずみ差 $\Delta \epsilon$ の比率が 20%以 上となる点 ($\Delta \epsilon / \epsilon_{ave} \ge 0.2$)を局部座屈発生と定義した.

以上の定義に基づいて最大耐力時の座屈モードを整理 すると、大別して、(1)全断面降伏(Yield)に支配されるケ ース、(2)全体座屈(Global)に支配されるケース、(3)局部 座屈(Local)に支配されるケースの3パターンが確認された. 以下では、(2)のパターンについて概説する.本パターン は C-1、C-3、L-1の3ケースで確認された.図3は代表的 な C-1の結果であり、(a)荷重-軸方向変位の関係と座屈発 生点、および(b)代表的な板要素の表裏のひずみを示す.

図3(a)に示すように、荷重の増大と共に腐食率がまずは 左フランジで局部座屈が発生し、その後も右フランジとウェ ブで局部座屈が発生している.ただし、これら局部座屈は 耐力の低下に直接にはつながっておらず、最終的には全 体座屈(曲げ座屈)により最大耐力が決定されている.図3 (b)に示すひずみの変化からは、約100kNを超えた付近で 左フランジ表裏のひずみの乖離が大きくなっており、局部 座屈を生じたことが確認できる.このように各板要素で局部 座屈が生じたものの、最大荷重時においては全体座屈が 発生していたと推察され、局部座屈の発生が必ずしも最大 荷重の決定要因にはなっていない.この理由は、腐食部材 における局部座屈が板厚の薄い部分で生じても、断面内 で応力再配分されることで耐力が上昇したと推察される.

2. 4 実験における座屈モードの整理

図4に全試験体に対する実験値と全体座屈強度の算定 に用いるJohnsonの放物線式に最小断面諸元(断面積およ び断面二次モーメント)を用いた計算値(=提案式)との比 と最大腐食率の関係を示す.最大腐食率40%付近を境にし て計算値の評価精度および座屈モードが異なり,両者の関 係は最大腐食率が約40%以下で腐食部材の座屈耐力を 概ね安全側に評価できるが,一方,最大腐食率が約40%以 上では危険側の評価となる傾向を示す.これは,腐食率の 増大に伴って局部座屈が発生し,その影響がより強くなる ためであり,局部座屈によって曲げに抵抗する有効な断面 が減少し,結果として全体座屈強度の算定を対象とした Johnsonの放物線式と実験結果との乖離が大きくなる.図4 からは最大腐食率が約40%以下の範囲において実用的な 耐力評価式として利用することが可能と言える.

3. 結論

(1)腐食部材の最大耐力の決定要因となる座屈モードを大別すると、全断面降伏後に全体座屈するモード、全断面降

伏に至る前に全体座屈が生じるモード,局部座屈のみにより終局に至るモードの3つのパターンが確認された.

(2)最大腐食率が約 40%以下の範囲では, Johnson 放物 線式による全体曲げ座屈耐力評価式に基づいて腐食した 溝形鋼および山形鋼の最大耐力を安全側に評価できる.

参考文献

[1]今福健一郎, 久積和正: 腐食劣化したチャンネルおよび アングル部材の圧縮耐力評価検討(その1), 土木学会第 66 回年次学術講演会, I-671

	表	1	実験	と解析	の結果	一覧
--	---	---	----	-----	-----	----

Name	Ratio of max. area loss to	Maximum strength [kN]					
		Experiment (1)	FEM		(1)/(2)	(3)/(2)	Contolling failure
	original area [%]		No fixed (2)	Fixed (3)			mode
C-1	49	204	225	250	0.91	1.11	Global
C-2	43	240	250	260	0.96	1.04	Local
C-3	42	278	308	386	0.90	1.25	Global
C-4	51	209	258	-	0.81	-	-
C-5	50	162	207	-	0.78	-	-
C-6	74	47	89	-	0.53	-	-
C-7	41	305	284	288	1.08	1.02	Local
C-8	49	172	225	-	0.76	-	-
C-9	47	260	266	286	0.98	1.07	Local
C-10	73	109	113	121	0.97	1.07	Local
L-1	57	31	33	39	0.92	1.19	Global
L-2	52	17	50	-	0.33	-	-
L-3	13	150	161	164	0.93	1.02	Yeild
L-4	12	152	162	168	0.94	1.04	Yeild
L-5	59	81	84	86	0.97	1.03	Yeild
L-6	71	31	44	-	0.70	-	-
L-7	22	155	136	-	1.14	-	-
L-8	27	191	190	191	1.01	1.01	Yeild
L-9	12	222	225	227	0.99	1.01	Yeild
L-10	13	231	221	223	1.04	1.01	Yeild
L-11	34	297	294	298	1.01	1.01	Yield
L-12	13	368	312	-	1.18	-	-
L-13	46	186	207	207	0.90	1.00	Yeild
L-14	11	423	349	-	1.21	-	-
L-15	37	237	251	252	0.94	1.00	Yeild
L-16	8	402	362	_	1.11	-	-
L-17	43	210	226	227	0.93	1.01	Yeild

(a)荷重-変位関係と座屈発生点

(b) 左フランジの表裏のひずみ

図3 全体座屈に支配されるパターン(C-1)

