ゴム支承の引張特性を反映した解析モデルの導入による ゴム支承のコンパクト化に関する解析的研究

九州大学大学院 学生会員	○岩本	周哲
(株) ビービーエム 正会員	植田	健介
九州大学大学院 正会員	崔	準祜

1. はじめに

1995 年発生した兵庫県南部地震では、多くの橋梁において鋼製支承が被害を受けたことから、橋梁に作用する地 震力の分散や橋梁の免震化を目的としたゴム支承を導入した橋梁構造物が急増した.これまでゴム支承のせん断特 性や圧縮特性については多くの研究がなされているが、引張特性については研究の事例が少なく、十分な知見が得 られていないため、現在の設計ではゴム支承の引張特性を適切に考慮していない.そこで本研究では、既往の実験 ¹⁾を参考にしてゴム支承の引張特性を反映したゴム支承の解析モデルを提案し、現在の設計で用いられているモデ ルとレベル2地震動に対する動的応答値を比較し、ゴム支承のコンパクト化の可能性について検討を行った.

P1

2. 解析対象橋梁

本研究では、図-1 に示す橋長 200m の4 径間連 続鋼箱桁橋を対象に、直線橋(モデル A)と地震 時支承部に引張反力が生じやすいとされている曲 線橋(モデル B: R=290m,モデル C: R=150m,モ デル D: R=106m)に対して検討を行った.支承は 積層ゴム支承,橋脚は橋脚高 13m を有する RC 単 柱 T 型橋脚である.

3. 解析モデルと解析条件

解析モデルを図-2 に示す.桁及び橋脚は梁要素で, 支承部は 6 方向成分を有するばね要素でモデル化した. 支承部については,主桁の接線方向から法線方向には りだした剛梁と橋脚の張り出し部の剛梁を連結する構 造とした.また,本モデルでは橋脚の柱部のみ材料非線形を 考慮しており,非線形復元力特性はトリリニア型武田モデル を使用した.入力地震動は,道路橋示方書・同解説 V耐震設 計編²⁰に記載されている標準波のレベル II 地震動タイプ II-II の 3 波を用いることとし,解析手法は Newmark-β法(β =0.25)による直接積分法を用いた.積分時間間隔は 0.01 秒, 減衰は Rayleigh 減衰により評価した.

4. ゴム支承の従来モデルと提案モデルの比較

道路橋示方書・同解説V耐震設計編²⁾には、ゴム材を使用した弾性支承や免震支承の場合鉛直方向に対し拘束し たモデルで評価してよいとされており、ゴム支承の従来モデルは図-3(a)に示すように圧縮剛性と引張剛性を等し く評価するのが一般的である.しかし、既往の引張実験¹⁾では、ゴム支承の引張剛性は圧縮剛性の10%~15%程度と 小さいことが明らかとなっており、本研究ではこの実験結果を参考に、ゴム支承の引張剛性を圧縮剛性の10%と小 さく評価したモデルを提案した.この提案モデルと、従来モデルを用いて地震応答解析を行い、支承部に生じる鉛

キーワード ゴム支承,引張特性,地震応答解析,ゴム支承のコンパクト化 連絡先 〒819-0395 福岡県福岡市西区元岡744番地 TEL092-802-3374

(モデルA: P1 外側支承部,タイプⅡ-Ⅱ3 波平均値)

(モデルD: P1 外側支承部,タイプⅡ-Ⅱ3 波平均値)

直方向反力の応答差を調べた.その結果,図-4と図-5に示すように従来モデルよりも提案モデル方が圧縮側と引張 側どちらに対しても応答値が小さくなる結果となった.これは曲率半径と関係なくすべてのモデルにおいて同結果 となったが,このように実際のゴム支承部に生じる反力は圧縮側,引張側ともに現在考えられている設計手法より 小さく評価される可能性があることがわかった.

5. ゴム支承のコンパクト化

ゴム支承の引張剛性を反映した提案モデルを導入することで、ゴム支承をより小さく製作することが可能である と考え、ここでは従来モデルで設計基準を満たしていた 900mm×900mm×100mm 寸法のゴム支承がどれほどコン パクト化できるかについて検討を行った.ゴム支承の幅と高さを変化させながら試行錯誤の検討を行った結果、 550mm×550mm×80mm の寸法までコンパクト化が可能であることがわかった.これは従来の設計手法により設計 された寸法より約4分の1の大きさである.このコンパクト化されたゴム支承を用いて地震応答解析を行い、支承 部に生じる圧縮反力、引張反力、せん断変位の最大値を求め、道路橋支承便覧³⁾で示されているそれぞれの許容値 と比較を行った.その結果を図-6に示す.許容値は、圧縮反力が2420kN、引張反力が605kN、せん断ひずみが200mm であるが、すべての項目においてゴム支承の設計許容値を満たしており、提案モデルを用いることで900mm× 900mm×100mmのゴム支承を550mm×550mm×80mmまでコンパクト化することが可能であることがわかった.

図-6 許容値との比較(タイプⅡ-Ⅱ3波平均値) ※点線:許容値

6. まとめ

ゴム支承の引張特性を反映してモデル化した場合,引張特性を反映していない従来のモデルに比べ,支承部の圧 縮側と引張側の反力が小さくなることがわかった.また,ゴム支承の引張特性を解析モデルに反映することで,現 在の設計手法で設計される大きさよりコンパクト化することが可能であると考えられる. 参考文献

- 植田健介,星隈順一,岡田太賀雄,堺淳一:鉛プラグ入り積層ゴムの引張方向の特性に関する実験, 土木学会第64回年次学術講演会,2009
- 2) (社)日本道路協会:道路橋示方書·同解説 V 耐震設計編, 2012
- 3) (社)日本道路協会:道路橋支承便覧, 2004

-340