# 大規模鋼橋の漸増動的解析(IDA)における入力波形による評価のばらつき

### 1. はじめに

大レベルまでのリスク水準を含む様々な地震動入力 に対する構造物の耐震性を評価する手法として,地震 波の強度を漸増させて非線形時刻歴応答解析を行う漸 増動的解析(Incremental Dynamic Analysis, IDA) がある.大規模鋼橋の場合,IDAは特に損傷順序を考慮 した耐震性の評価や,弱点部分や弱点部材の抽出に有 用な方法であると考えられる<sup>1)</sup>.しかしながら,IDAは 結果が解析での地震入力波形の選択に依存することか ら,評価にばらつきが生じることが考えられる.本検 討では,鋼橋を対象に複数の地震波を用いたIDAを行い, 耐震性能評価結果のばらつきを検討する.

## 2. 漸増動的解析(IDA)に基づく耐震性能評価

大規模鋼橋において地震時に損傷が懸念される各部 位に関する IDA 曲線を作成し,限界状態を超過する振 幅倍率による損傷順序の評価を行う.本研究での IDA に基づく耐震性能評価法の概念を図-1 に示す.手順の 概要は以下の通りである.

- (1) 対象構造物に応じて基準地震波を選択する.
- (2) 選択した基準地震波に振幅倍率(SF,例えば0.25~
  2.0などの値)を乗じ、大小様々の強度の入力波を 作成する.
- (3) SFの小さい入力波から大きい入力波まで順次非線 形時刻歴動的応答解析を行い,各々のSFの値に対応 する最大応答値を求める.

阪神高速道路(株)正会員 ○谷口 惺京都大学防災研究所正会員 五十嵐 晃ショーボンド建設(株)正会員 木田 秀人

の値としたグラフを描き,各対象部位のIDA曲線を 得る.

- (5) 各々の部位に対する限界状態と損傷の程度を定義し、各々の限界状態を超過する SF を求める.
- (6) 結果を損傷順序ダイアグラムにまとめ,損傷順序と 安全余裕度の評価を行う.

## 3. 入力波による評価のばらつき

#### (1)対象橋梁

本研究で対象とした5径間連続鋼Vレッグラーメン橋 (A橋)を図-2に示す.主桁は材料特性または断面形状の 異なる43断面で構成されている.隣接桁と橋桁の衝突 は,遊間を考慮した衝突ばね要素でモデル化を行う. 構成則を図-3に示す.

#### (2)入力波

基準地震波として道路橋示方書レベル 2 タイプⅡ地 震動のⅢ種地盤用波形<sup>2)</sup>(以下,標準波),架橋地点に おける断層帯を考慮して作成した想定サイト波をそれ ぞれ 3 波ずつ選択する.想定サイト波の加速度応答ス ペクトルを図-4 に示す.想定サイト波は,A 橋の1次 の固有周期での加速度応答値が設計スペクトルと一致 するよう振幅を調整する.SF は 0.20, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 の7 種類を用いる.

### (3)入力波による評価のばらつき

標準波と想定サイト波のそれぞれに関して,各入力 波による応答値と3波平均値の比を用いて,入力波に よる評価のばらつきを確認する.



(4) 横軸を着目する最大応答値を表す指標,縦軸をSF

キーワード 漸増動的解析,大規模鋼橋,耐震性能評価,損傷順序,入力波,評価のばらつき 連絡先 〒611-0011 宇治市五ケ庄 京都大学防災研究所 TEL0774-38-4135



図・5 に主桁圧縮ひずみの IDA 曲線,図・6 に全断面で の 3 波平均値との比を示す.標準波は断面 43,想定サ イト波は断面 1,3,4,19,25 を除き,3 波平均値との比 が 0.5~1.5 の範囲の値となる.標準波,想定サイト波 とも塑性化する範囲で IDA 曲線のばらつきが大きくな り,またばらつきは想定サイト波のほうが大きい結果 となった.想定サイト波は A 橋の固有周期以上の長周 期範囲での加速度応答値が標準波と比較して大きく, 塑性化による長周期化により応答が増大したと考えら れる.塑性域に達するような構造物を対象とする場合、 用いる基準地震は長周期範囲(固有周期以上)での応 答スペクトルの大きさが,応答評価への影響要因の一 つと推察される.

図-7 に桁端部(断面 1,43)における隣接桁との衝突 力と圧縮ひずみの関係を示す.衝突力と圧縮ひずみの 相関性は高く,桁端部では隣接桁との衝突の発生によ り評価がばらつくと考えられる.桁端部以外で比が大 きくなる断面(断面 3, 4, 19, 25)では無視できない塑 性ひずみが生じており,塑性化に至る部位については ばらつきが大きい事が観察される.

各部位での IDA 曲線を求め,図-8 に損傷順序ダイア グラムを示す.縦軸は各部位の限界状態,横軸は限界 状態を超過する SF を表す.標準波,想定サイト波とも, 入力波により IDA 曲線はばらつくが,限界状態を超過 する振幅倍率のばらつきは SF で1段階以内となる.入 力波による限界状態を超過する振幅倍率のばらつきは 小さく,損傷順序に与える影響は小さいと考えられる. ただし,サイト波は RC 橋脚の卓越周期の 0.5 秒付近で の加速度応答値がそれぞれ異なるため,RC 橋脚に関す る評価はばらつく.また,想定サイト波では,特定の 入力波でのみ応答が大きくなることが懸念される.

## 4.結論

漸増動的解析に基づく耐震性能評価における入力波 による評価のばらつきを確認した.鋼部材では,隣接 桁との衝突および部材の塑性化が原因で評価のばらつ きが大きくなる.また基準地震波の,構造物の固有周 期以上の範囲での加速度応答スペクトルの大小が評価 への影響要因である.ここで検討したケースでは基準 地震波の選択が損傷順序に与える影響は小さいが,さ らに波形の範囲を拡大して検討する事も考えられる.

参考文献 1)谷口惺・五十嵐晃・木田 秀人:漸増動 的解析 (IDA) に基づく長大橋の耐震性能照査,土木学 会論文集 A1, Vol.70, No.4, 2014 (印刷中).

