3径間超長大吊橋の弾塑性挙動と耐荷力

首都大学東京	学生会員	〇岩下	慎吾
首都大学東京	フェロー会員	野上	邦栄
首都大学東京	学生会員	藤岡	健佑
首都大学東京	正会員	岸	祐介

1. 研究の背景と目的

1962年に若戸大橋が完成したのを皮切りに、日本では高度経済成長期、本州四国連絡橋を初めとする多くの長大橋が建設された。1998年の明石海峡大橋の完成により、日本の長大橋の建設技術力は世界一といわれるまでに成長した。しかし、2008年に海峡横断6事業が凍結されると、国内の新規長大橋建設の可能性は絶たれ、以降は維持管理に重点が置かれることになった。しかし、海外に目を向けると、21世紀に入ってから世界各地で長大橋の建設需

要が高まっている。計画案には明石海峡大橋よ り支間が長い長大橋の建設計画も幾つか存在 する¹⁾。このような状況において、海外市場で の日本企業の参入の可能性を高めるためにも、 更に、既存の長大橋が寿命を迎えたときに備え、 長大橋の研究を継続する意義は十分にある。こ のような背景において、本研究では、中央支間 長 3000mの超長大吊橋の耐荷力特性について解 析的検討を行う。

2. 対象橋梁

本研究では海峡や島嶼間に架橋する吊橋を 想定し、図1のような中央支間長 3000m、全長 5400m、径間比1:2.5:1の連続桁吊橋の耐荷力 特性を明らかにする。補剛桁の鋼材は基本的に SM490 であるが、主塔付近は曲げ応力が発生する ため、SBHS700 とする(図2)。補剛桁の断面は、 2 箱+グレーチングであり、グレーチングは等価 板厚の鋼板にモデル化した²⁰。図3のように補 剛桁の断面は母材板厚 t_wと補剛材の換算板厚 t_r をモデル化した。さらに、主ケーブルには高強 度ケーブル 2100MPa を採用している。

3. 解析方法

研究室開発の弾塑性有限変位解析プログラムを用い、耐荷力解 析を行う。耐荷力解析は、弾塑性有限変位理論に基づく骨組構造 解析である。非線形解析は、変位増分法により行う死荷重だけの 状態に対して、 $\alpha \times ($ 死荷重+活荷重)のように、荷重係数 α を漸 増させることにより終局強度を求める。 α +1を荷重倍率 β とし、 これを全体系の耐荷力とする。構成部材の応力とひずみの関係を 表1および図4のようにモデル化した。補剛桁と主塔は完全弾塑 性型(図4(a))、ケーブル系はバイリニア型(図4(b))である。安全 率は主ケーブルが2.2、ハンガーは2.5 である。

補剛桁 主塔 主ケーブル ハンガ・ SM490 SBHS700 SM570 2100 1748 σ_u (MPa) 490 780 568 2100 1748 σ_v (MPa) 315 700 450 1907 1561 E'/E 0.0294 0.0228 0 0 0 0.0035 0.0016 0.0023 0.009 0.008 0.04 0.05 ε σ σu E2=0 σv E₂ σ Ultimate Vield ε • εγ εu εu εv (a)補剛桁と主塔 (b)ケーブル系 図4 構成則

キーワード 長大橋 吊橋 耐荷力

·連絡先 〒192-0397 東京都八王子市南大沢 1-1 首都大学東京 TEL 042-677-1111

荷重条件は、死荷重Dと活荷重Lの組合せとし、活荷重 載荷条件は各部材に対して最も厳しい状態となる図5の 4ケースとする。なお、風荷重は考慮していない。

4. 耐荷力特性

活荷重載荷条件4ケースに対する荷重-変位曲線を示したの が図6である。縦軸は荷重倍率 β 、横軸は左側径間の主塔近傍 における補剛桁の鉛直変位 v である。LC1,2,3については、ま ず荷重倍率 β =2.41で、ハンガーが降伏する β =2.7を超えると、 主塔付近の補剛桁が降伏する。これは主塔付近でタワーリンク によって支持された補剛桁に、荷重増加に伴って曲げ応力が集 中する為で、この位置でLC4以外すべての荷重ケースにおいて 降伏した。荷重倍率 β =2.4を超えると、ハンガーの降伏・塑性 化の進展により、変位の増加が急になる。終局時には全長にわ たってほとんどのハンガーが破断し、終局状態に至る。LC2 と LC3 は着目点付近の荷重条件が似ているため、同等の変位とな った。LC4 は補剛桁が降伏しなかった為、ほとんど変位が出な かった。主塔と主ケーブルは降伏に至らなかった。

主ケーブルの最大応力はLC1 荷重時の主塔付近で1588[MPa] であり、降伏まで17%余裕があった。主塔は、コンクリート主 塔を鋼製³⁾に換算したものであるため、その換算板厚は通常の 鋼製主塔より厚く、剛性も非常に高い。この為すべての荷重ケ ースにおいて降伏しなかった。

橋梁全体の塑性化状況と変形の様子を、LC1を代表として図 7に示す。赤太線は塑性化箇所を示している。上段はハンガー の初期降伏、中段は補剛桁の初期降伏、下段は終局時の様子で _ ある。LC2,3はLC1同じような結果となった。一方LC4は補剛 桁が降伏することなく、終局状態となった。(図8) _

5. まとめ

今回対象とした 3000m超長大吊橋の耐荷力 解析結果を各構成要素の初期降伏および終局 状態と荷重倍率の関係をまとめたのが表 2 で ある。LC1, 2, 3, 4 の荷重倍率は約 2. 79 となり、 どの荷重条件に対してもほぼ同じ終局強度と なった。終局時荷重倍率は 2.7 を超える十分 な値が得られており,常時荷重に対する耐荷

図8 LC4 塑性化の状況と変形

表2 構成要素の初期降伏時および終局時荷重倍率

	LC1	LC2	LC3	LC4
ハンガー降伏時の荷重倍率	2.404	2.408	2.418	2.41
補剛桁降伏時の荷重倍率	2.717	2.704	2.755	降伏せず
終局時の荷重倍率	2.786	2.788	2.789	2.793
終局時の塑性状況	桁,ハンガー	桁,ハンガー	桁,ハンガー	ハンガーのみ
終局時 備考	一部ハンガー破断 LC4以外、主塔付近の桁の底板が塑性化			

カの観点からは、建設は実現可能である。今後は、よりフレキシブルな断面設計をした鋼製主塔の耐荷力特性を明 らかにする予定である。さらに、耐風、耐震性能の面から検討する必要がある。 参考文献

 C.M.Park: Long-span bridge technology, Hyundai E&C International Seminar, 2012, 2) 日本橋梁建設協会: デザインデータブック, p80,2006,3) 鋼橋技術研究会技術情報部会:「超長大橋の構造設計 WG」 - 超長大吊形式 橋梁の塔の変形特性と設計法に関する研究,1997