遠隔非接触振動計測装置を用いた RC 床版の劣化検知に関する研究

長崎大学大学院工学研究科 正会員 〇出水 享,松田 浩
西日本高速道路エンジニアリング九州(株) 正会員 藤岡 靖,大石 義成
(株)計測リサーチコンサルタント 正会員 高橋 洋一

1.序 論

遠隔非接触計測が可能なレーザドップラー速度計 (LDV)は簡易に振動特性や動的変位を計測することが 可能である.そのため、インフラ構造物の効率的・効 果的な調査に適用が期待されている.LDVをインフラ 構造物に適用するにあたって、次の成果が確認されて いる¹⁾.①接触式加速計・速度計と同等の計測精度が得 られる.②固有振動数計測において、レーザ光の照射 角度・計測環境の照度・計測距離の違いが計測値に与 える影響は少ない.③二台のLDVによる同期計測を行 うことで低次モード形を把握することができる.

本研究は, LDV を実橋梁の RC 床版に適用し,振動 特性の相対的相違から劣化部の検知を可能とする効率 的・効果的な調査法の開発を試みるものである.

2. 実橋梁計測

対象橋梁は,熊本県内にある連続鋼プレートガーダ 一橋(橋長 535m,有効幅員 10m,4 主桁)である.橋梁下面 を写真1に示す.本橋梁は,既往調査から増厚床版と 既設 RC 床版の界面に剥離が確認されている.ここでは, 剥離があり構造物として一体性を欠くと判断される箇 所を劣化部,剥離がなく一体性があると判断される箇 所を健全部とする.既往の打音調査による劣化部の推 定位置を図1に示す.

今回,LDV による振動計測により RC 床版の劣化部 検知を試みた.劣化部は樹脂注入により床版を一体化 させる補修工事を行うことから,補修効果の確認もあ わせて行った.RC 床版の振動は,それを支持する主桁 の影響が大きい.そのため,主桁の振動の影響を考慮 して,2台のLDV を用いて RC 床版と隣り合う主桁を 同期させて計測を行った.RC 床版下面に二方向ひび 割れが確認されている箇所(A12~15)は劣化部の参考測 定対象とした.

計測状況と計測箇所を写真2と図2にそれぞれ示す. LDV を計測箇所の直下に設置しレーザ光と計測面がほ ぼ垂直になるように計測を行った.なお,計測距離は 約4mである.高精度に計測するため計測箇所に再帰性 反射シールを貼付し,レーザ光を照射し計測を行った. なお,サンプリング周波数は1000Hzとした.

計測によって得られる振動速度波形を図3に示す. データ解析は図中の赤丸で示す大型車両が通過した と思われる約8秒間の範囲のデータ8000個を用いて 行った.

写真1 橋梁下面

写真2 計測状況

キーワード:レーザドップラー速度計,非接触振動計測,橋梁,床版,異常検知 住所:長崎県長崎市文教町1-14 長崎大学大学院工学研究科 電話, FAX:095-819-2593

3. 計測結果

3.1 解析方法

RC 床版の異常振動応答を検知することを目的に,主 桁の振動速度を加振入力, RC 床版の振動速度を応答 出力とした,系の入力と出力の比である伝達関数*G*(ω)で 評価を行った.床版と主桁が同じ振動,つまり床版が 健全な場合には伝達関数が小さくなる.一方,床版に 異常がある場合は大きくなる.

$$G(\omega) = \frac{\overline{F(\omega)} X(\omega)}{\overline{F(\omega)} F(\omega)} = \frac{W_{fx}(\omega)}{W_{ff}(\omega)}$$

なお、 $F(\omega)$:入力のフリースペクトル、 $\overline{F(\omega)}$: $F(\omega)$ の 共役複素数、 $X(\omega)$:出力のフーリエスペクトル、 $W_{f}(\omega)$: 入力f(t)のパワースペクトル、 $W_{fx}(\omega)$:入力と出力間の クロススペクトルである.

3.2 解析結果

補修前の代表的な健全部(C7)と劣化部(D7)の伝達関 数を図4と図5にそれぞれ示す.健全部では全周波数 領域で小さい値を示しており,床版と主桁は同じ振動 をしていることが分かる.一方,劣化部では図中の赤 丸で示す 30Hz 付近において大きなピークが確認され, 主桁とは異なる振動が生じていることが分かる.この 変化を劣化部特有の振動特性と仮定する.

仮定条件を検証するため、補修前後の劣化部の振動 特性の変化を伝達関数で評価した.(D7)における補修前 後の伝達関数を図 6 に示す.補修前のピークは消失・ 減少し、健全部に近似した振動特性に変化しているこ とが確認できた.

支承部付近(A15)の伝達関数を図7に示す.補修後は 健全部の振動特性に近づいていることが確認された. 支間中央部(A13)と(C13)の伝達関数を図8と図9にそれ ぞれ示す.(A13)の補修後は健全部の振動特性に近似し ているが,(C13)は補修前後で変化が確認されなかった.

劣化部の全計測点 16 箇所のうち, C12~14, D8~9, D14 の 6 箇所は補修前後で顕著な変化がなく, 補修後 も劣化部と同様の傾向が確認された.変化が確認され た位置は支承部付近に集中しているが, その原因につ いては今後の課題としたい.

4. 結 論

2 台の LDV を用いた同期計測を行い,2 つの計測デ ータから伝達関数を算出することで床版の劣化部を検 知することができた.なお,床版補修では注入量が小 さく顕著な差を捉えることが困難な箇所が見受けられ たが,一部については補修効果を確認することができ た.今後,劣化度合いによる検証を行うことで,精度 検証を図る.

参考文献

1) 牧野高平, 松田浩, 森田千尋, 一宮一夫: レーザー ドップラー速度計を用いた振動計測による実橋梁の構 造同定, 実験力学 Vol.11,No.3,pp.201-208, 平成 23 年9月

謝辞

計測ならびにデータ整理に学生の杉山君,山口君に 協力していただきました.ここに感謝の意を表する.