PEM システムの基本形の検討(その2 人工バリアー体化モジュールの検討)

原子力発電環境整備機構	正会員	鈴木	覚	窪田	茂			
清水建設(株)	正会員() 中島	均	多田	浩幸	戸栗 智	冒仁	
(株) I H I	非会員	川上	進	岩田	裕美子	中原	康典	
(公財) 原子力環境整備促	進・資金管	理センタ	<u> </u>	正会員	矢萩	良二	朝野	英一

1. 目的

本報では、その1に示した実施項目のうち、人工バリア一体化モジュールの検討について報告する.

2. 人工バリアー体化モジュールと関連する構成要素

PEM システムの構成要素を図1に示す.人工バリア一体化 モジュールは、ガラス固化体をオーバーパックに封入したも のを, 緩衝材とともに PEM 容器に一体化したものである. モジュールを処分坑道に定置した際、坑道壁面との間に隙間 が生じるが、この隙間はベントナイト系材料で埋め戻す.ま た,処分坑道の端部にはプラグを設置する.

3. 人工バリアー体化モジュールの仕様

(1)人エバリア

人工バリアは炭素鋼オーバーパック(厚さ19 cm)と緩衝 材 (ケイ砂混合ベントナイト, 密度 1.6 Mg/m³, 厚さ 70 cm) とした¹⁾.

(2) PEM 容器

PEM 容器は、PEM システム特有な要素であり操業期間中

の構造健全性、遮水性、耐食性が技術要件として求められる.ただし、閉鎖後長期にわたっては特に要求し ない.

表1に示す4つの搬送定 置方法と荷重を考慮して, PEM 容器の応力変形解析 を実施し, PEM 容器の厚さ 等を設計した. PEM 容器は、 円筒形とし,材質はオーバ ーパックと同様に炭素鋼と した.容器表面については, PEM の搬送中に湧水の滴 下により緩衝材の健全性を 損なわないようにするため. 容器表面に孔の無い構造と

方式	HS-G	HS-AB	HL-G	VS-G
概念図			LASS LASS CONTRACTOR	
把持方法	ツイストロック方式 (クレーン)	PEM製作・組立時の みクレーン方式 搬送・定置時はエア ベアリング方式	ツイストロック方式 (クレーン)	ツイストロック方式 (クレーン)
容器板厚	28mm	28mm	28mm	28mm
定置時 吊 り 部発生応力	110MPa	容器底部の広い面積 を支えるため極小 <1MPa	163MPa	175MPa
把持部姿勢 (回収時)	定置時姿勢の維持が 必要	特に要求無し	定置時姿勢の維持が 必要	定置時姿勢の維持が 必要

表1 PEM 容器の仕様例

キーワード 高レベル放射性廃棄物, PEM システム, PEM 容器, 隙間埋戻し材, 設計 連絡先 〒108-0014 東京都港区芝 4 丁目 1番 23 号 三田 NN ビル 12 階 原子力発電環境整備機構 TEL 03-6371-4004

PEM システムの構成要素

した.

地上施設における緩衝材の施工方法に応じて, PEM容器の構造を検討した.これまでに, 容器形状として, 一体型容器, 鋼殻リング容器, 横割り容器について製作実積²⁾がある.ここでは, 鋼殻リング容器を対象と して検討を実施した. PEM容器の仕様を表1に示す.

(3)隙間埋め戻し材

坑道断面仕様例を図2に示す。一体化モジュールと坑道壁面間の隙間埋め戻し材には、低透水性と緩衝材 の性能低下の抑制の技術要件を設定した.隙間埋め戻し材には、ベントナイト系材料を使用し、緩衝材と同

等の膨潤圧を確保することにより,緩衝材の膨 潤変形を抑制することとした.このため,隙間 埋め戻し材の材料や施工時の有効粘土密度は緩 衝材と同じとした.

隙間埋め戻し材の施工方法としては,吹き付 けベントナイト方式と,ペレット充填方式が候 補としてあるが,隙間の大きさや施工手順など に応じて,適用する基本形を選定する.例えば, 吹き付けベントナイト方式は,隙間が比較的大 きな,HS-G型,HL-G型には適用できるが, HS-AB型の場合,隙間幅が150mm程度のため, 適用は難しい.一方,隙間が小さい場合には, ベントナイトペレット充てん方式が有望と考え ている(表 2).

(4) 端部プラグ

PEM システムにおける端部プラグは,低透水 性が求められるベントナイト材料を使用した止 水プラグと力学プラグにより構成する.

3. 人工バリアー体化モジュールの遮へい性

3次元モンテカルロ輸送計算コード MCNP を 用いて PEM 容器の表面線量を計算した(表3). オーバーパック,緩衝材により,ガラス固化体 からの放射線が大幅に減衰することを確認した.

4. まとめ

人工バリア一体化モジュールの構成要素を定 義し,要求機能と技術要件から,概念的な仕様 を設定した.

参考文献

 原子力発電環境整備機構:地層処分事業の安全確保(2010年度版),NUMO-TR-11-01,2011年9月.
原子力環境整備促進・資金管理センター:平成21年度地層処分技術調査等委託費高レベル放射性廃棄物処分関 連処分システム工学要素技術高度化開発報告書(第1分冊)遠隔操作技術高度化開発(2/2),平成22年3月.

表2 隙間埋め戻し材の設定

施工方式	吹付け ベントナイト方式	ペレット充てん方式
材料	ベントナイト:70% 砂:30%	ベントナイト:100%
密度	乾燥密度:1.6Mg/m ³ 有効粘土密度: 1.37Mg/m ³	乾燥密度:1.37Mg/m ³ 有効粘土密度: 1.37Mg/m ³
適用可能 な基本形	HS-G 型, HL-G 型	HS-G 型, HS-AB 型, HL-G 型, VS-G 型

図2 坑道断面仕様例 (上:HS-G型,下:HS-AB型)

表3 遮へい計算結果

(ガラス固化体 50 年冷却後,最大値)

キャニスタ表面	194 Sv/hr		
オーバーパック表面	4.7 mSv/hr		
PEM 表面	1.31 μ Sv/hr		