動的荷重を受けるコンクリート構造物の損傷解析

東北大学大学院工学研究科	学生会員	○佐藤 義浩,
東北大学災害科学国際研究所	正会員	高瀬 慎介,
東北大学災害科学国際研究所	正会員	寺田 賢二郎
茨城大学工学部	正会員	車谷 麻緒,

1. はじめに

土木構造物に多用されるコンクリートは、引張ひび割れ による損傷を受けると急に剛性を失うようなひずみ軟化挙 動を示すことが知られている.また、コンクリートは動的 載荷と準静的載荷ではその力学的特性が大きく異なること が知られている.そこで本研究では、材料のひび割れや軟 化挙動を近似的に再現できる損傷モデルを動的陽解法 FEM に実装し、コンクリート構造の動的破壊のメカニズムを解 明するための数値シミュレーションを行った.具体的には、 鉄筋コンクリート(以下, RC)梁を対象として、動的破壊 と準静的破壊挙動の数値解析を行い、荷重-変位関係や破壊 モードの違いについて詳細な考察を行った.

2. 支配方程式

本研究では、等方性損傷モデルを用いてコンクリートの ひび割れを表現することとし、スカラー変数である損傷変 数 *D*を用いて、応力ひずみ関係式を次式で表す.

$$\bar{\sigma} = (1 - D)C: d \tag{1}$$

ここで、 $\overset{\circ}{\sigma}$ は Cauchy 応力テンソルの Jaumann 速度, Cは 弾性係数テンソル, dは変形速度テンソルである.この損 傷変数 Dは損傷の進展を $0 \le D < 1$ で表し, D = 0の場合, 材料は損傷のない弾性挙動を表すが, $D \approx 1$ の場合,材料 は完全に剛性を失って破壊状態となる.損傷の進展は,等 価ひずみの増加によって決定する.本研究では準脆性材料 に適した等価ひずみとして次式に示す de Vree *et al.*¹⁾よる定 義式を採用する.

$$\varepsilon_{eq} = \frac{k-1}{2k(1-2\nu)}I_1 + \frac{1}{2k}\sqrt{\frac{(k-1)^2}{(1-2\nu)^2}I_1^2 + \frac{12k}{(1+\nu)^2}J_2}$$
(2)

ここで、 I_1 , J_2 は蓄積ひずみの第1不変量とその偏差成分 の第2不変量、 ν は Poisson 比、k は圧縮引張強度比である. 本研究では、コンクリートについての圧縮と引張の強度比 をk = 10とする.また、損傷の進展については、Mazars と Pijaudier²⁾により定義された次の関数を用いる.

$$D(\kappa) = 1 - \frac{\kappa_0}{\kappa} \left(1 - \alpha + \alpha e^{\beta(\kappa_0 - \kappa)} \right) \tag{1}$$

ここで、 κ は材料が経験した最大の等価ひずみであり、 κ_0 は 損傷開始の閾値、 α 、 β は実験結果とのキャリブレーション 等により定まる材料パラメーターである.

東北大学大学院工学研究科	学生会員	青葉 勇樹
東北大学災害科学国際研究所	正会員	加藤 準治
東北大学大学院工学研究科	正会員	京谷 孝史
中央大学理工学部	正会員	樫山 和男

3. RC 梁の動的解析

(1) 解析条件・解析モデル

図1に示すようなRC 梁の破壊の数値シミュレーション を行う.対称条件を用いて1/4の領域のみをモデル化し、ボ クセルメッシュに分割する. コンクリートに用いた材料モ デルのパラメーターは, Young 率 E = 28.5 GPa, Poisson 比 $\nu = 0.2, \alpha = 1.0, \beta = 0.3, \kappa_0 = 0.0002$ である. 一方, 鉄筋 の弾塑性モデルのパラメーターは、ヤング率と Poisson 比 v をそれぞれ 200 GPa, 0.3, 降伏応力 $\sigma_v = 200$ MPa, ひずみ 硬化係数はほぼゼロとする.また、コンクリートと鉄の質量 密度は、それぞれ 2.4×10³、7.85×10³ kg/m³ とし、自重に よる平衡状態を実現した後に,梁の中央部に強制変位を与 える. 強制変位量は, 0.002 m に固定し, 載荷時間を変える ことによって載荷速度を2m/s(高速載荷), 0.2m/s(低速 載荷)とした.陽解法の安定条件の特性として、メッシュサ イズが小さくなるほど1ステップの時間幅を小さくしなけ ればならないという制約から、高速載荷では節点数705824、 要素数 679117 に分割し、低速載荷では節点数 124679、要 素数 115504 に分割し解析を行った.

3) (2) 解析結果・考察

解析結果として,まず図2に強制変位を与えた節点での 荷重-変位曲線を示す.低速載荷に比べ,高速載荷では初期 の剛性とピーク強度が10倍程度大きくなり,コンクリート

〒 980-8579 仙台市青葉区荒巻字青葉 6-6-06, TEL 022-795-7425, FAX 022-795-7423

キーワード: コンクリート構造物, 動的破壊, ひび割れ, 損傷モデル, 動的陽解法 FEM

土木学会第68回年次学術講演会(平成25年9月)

図-3 低速載荷時の損傷変数および軸方向応力

図-4 高速載荷時の損傷変数および軸方向応力

のひび割れ発生後の軟化挙動が急激に進む結果が得られて いる.また、図3と図4には、それぞれ低速・高速載荷時 における損傷変数と梁の長手方向引張応力の分布を示す.

図3の低速載荷の場合の結果から、梁構造全体が準静的 に挙動して,引張応力が梁中央の下部に集中した後に,い わゆる曲げひび割れが卓越している様子が分かる.また、ひ び割れ後の剛性は低下するものの、鉄筋が剛性を保つため に図2の曲線は右上がりとなっており、構造物としての強度 発現は鉄筋の引張破断強度に支配されるものと考えられる.

一方,図4から分かるように,高速載荷の場合には構造 物全体に応力が伝搬する前に,載荷面の周りに集中して大 きな応力が発生し、対応する箇所に大きな損傷が生じてい る. すなわち, 高速載荷の場合には, 構造物としての応答 以前に、局所的な材料の剛性が荷重-変位関係に現れ、見か け上の剛性が大きくなるが、せん断荷重に起因して局所的 に発生する大きな引張応力により、斜め方向のいわゆる押 抜きせん断破壊現象が発現する(図4上).しかし、この押 抜きせん断が生じた段階では未だ耐荷力を保っており、ひ び割れは鉄筋とコンクリートとの界面に到達した後に厚さ 方向にも進展する. そして, 鉛直方向のせん断荷重を軸方 向に伝える機能が失われ,構造物の崩壊に至るために,図 2に示すようなな構造物全体の急激の耐荷力の低下(軟化) が発現したものと考えられる.

4. おわりに

コンクリート構造物に対して動的荷重を負荷する解析を 行い、載荷速度による強度、損傷パターンの違い等を調査 した. 低速載荷では、曲げ変形により典型的な曲げひび割 れが卓越し、鉄筋が梁構造全体の強度を支配しているのに 対して, 高速載荷では, 局所的な材料の応答が構造全体の みかけの耐荷力として現れ、押し抜きせん断挙動によるひ び割れが鉄筋界面と厚さ方向に進展することで脆性的な破 壊に至ることが示された.

参考文献

1) J.H.P. de Vree, W.A.M. Brekelmans and M.A.J. van Gils : Comparison of nonlocal approaches in continuum damage mechanics, *Comput. Struct.*, Res, Vol.17, pp. 441–452, 1995.
J.Mazars, Pijaudier-Cabot G : Continuum damage theory-application to concrete, pp.345–346