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1. INTRODUCTION  
Road embankments are essential infrastructures of each 
country that are sometimes quite vulnerable to earthquake 
damages. Liquefaction-induced settlement and spreading 
caused by earthquake are major causes of damage to such 
structures. Based on loading conditions and formation of 
subsoil layers, numerous patterns of failure can be 
assumed for an embankment. Sasaki et al. (1994) reported 
various failure modes in dikes and road embankments. 
OKA et al. (2012) presented the main causes and patterns 
of river embankment damages during 2011 off the pacific 
coast of Tohoku earthquake. He mentioned the effects of 
subsoil clay profiles and duration time of earthquake 
motions. In this paper, the analysis results of an 
embankment on a layered ground consisting of clay and 
loose sand layers subjected to a long duration simulated 
earthquake are presented and the effects of clay layer’s 
stiffness are discussed.     

 

2. CONSTITUTIVE MODEL & MATERIALS 
The constitutive model used for sandy layers is the Elasto-
Plastic (EP) cyclic model for sands developed by Oka et al. 
(1999), while an elasto-viscoplastic (EVP) model by 
Kimoto et al. (2012) is employed for the clay. The elasto-
viscoplastic model considers the structural degradation of 
the soil skeleton by the shrinkage of overconsolidation 
boundary surface and static yield surface regarding the 
accumulation of viscoplastic strain. Derivation is based on 
an overstress type of viscoplasticity theory and the non-
associated flow rule. The nonlinear kinematic hardening 
rule is adapted into the viscoplastic strain dependency of 
shear modulus. The strain rate tensor consists of elastic 
and viscoplastic strain rates defined as: 
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Static yield function fy is obtained by considering the 
nonlinear kinematic hardening rule for the changes in 
stress ratio, the mean effective stress, and viscoplastic 
volumetric strain (Sawada 2008) as: 
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where *A  and *B  are material parameters, vp
ve  is the 

viscoplastic deviatoric strain increment tensor, and vpγ is 
the accumulated viscoplastic shear strain. The scalar 
kinematic hardening parameter *

1my is determined by 

1 1
vp vp

m v m vdy B A d y dε ε⎛ ⎞∗ ∗ ∗ ∗
⎜ ⎟
⎝ ⎠

= −     (6) 

In this equation *
2A  and *

2B  are material parameters, and 
vp
vε is the viscoplastic volumetric strain rate. The 

viscoplastic deviatoric strain rate and the viscoplastic 
volumetric one can be expressed as: 
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Refer to Oka et al. (1999) and Kimoto et al. (2012) for 
detail descriptions of the constitutive models. Table 1 
shows the input data of the models.  
 

Table 1 Material Properties 

 
 
3. ANALYSIS METHOD 
Program COMVIDY-2D developed by Oka et al. (2013) 
was used in this simulation. This code adopts u-p 
formulation with the finite deformation FEM method. As 
for the discretization in the time domain, Newmark’s β 
method is used. Rayleigh’s damping is also applied, which 
is proportional to the initial stiffness and mass matrix. 
 
4. FEM MODEL & BOUNDARY CONDITIONS 
Fig.1 shows the finite element model of this analysis with 
1140 eight-node plane strain elements. As for the 
boundary conditions, equal displacements have been 
applied to the right and left sides of the model. The nodes 
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Em (EP) As-U (EP) As-L (EP) Dg1 (EP) Ac (EVP)
Density ρ(t/m3) 1.8,2.0 1.8 1.8 1.9 1.66
Coefficient of Permeability Kw

s /γw (m4/kN*s) 2.25×10-5 3.89×10-8 5.6×10-7 1.0×10-6 5.87×10-11

Initial void ratio e0 0.8 0.623 0.9 0.9 1.25
Compression index λ 0.025 0.0875 0.01 0.01 0.341
Swelling index κ 0.0003 0.0068 0.003 0.003 0.019
Initial elastic shear modulus ratio G0/σ'm0 761 175.5 512 541 75.2
Stress ratio at compression M*

mc 0.909 1.12 0.909 0.909 1.24
Stress ratio at failure M*

f 1.229 1.36 1.158 1.336 1.24
Hardening parameters B*

0,B*
1,Cf 2000,4,0 3000,5,15 3800,70,0 3000,5,0 100,40,10

Structural parameters n,β 0.50,50 - - - 0.30,3.6
Dilatancy Parameters D*

0,n 1.0,4.0 2.75,4.75 1.00,6.00 - -
Reference value of plastic strain γr

p* 0.0050 0.0033 0.0050 - -
Reference value of plastic strain γr

e* 0.003 0.019 0.010 - -
Viscoplastic parameter m' - - - - 24.68
Viscoplastic parameter C1(1/s) - - - - 1.00×10-5/10-19

Viscoplastic parameter C2(1/s) - - - - 3.83×10-6/10-20

Scalar hardening parameters A*
2,B*

2 - - - - 5.9,1.8
Strain-dependent parameters  α',r - - - - 10,0.4
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