プラグコンクリートに用いた低発熱・低収縮高流動コンクリートの諸特性 - 倉敷国家石油ガス備蓄基地(配管竪坑工事その4) -

日本海上工事株式会社

正会員 ○岸田 哲哉, 久保 亮

鹿島建設株式会社 正会員 秋田伸,手塚康成,渡邊有寿,渡邉賢三,柳井修司 非会員 金戸 辰彦

独立行政法人 石油天然ガス・金属鉱物資源機構

1. はじめに

岡山県倉敷市に位置する LPG 国家備蓄倉敷基地は、地下に建設された水封式岩盤貯槽である. 当基地の貯槽の「ふ た」の役割を担うプラグコンクリートには高い水密性と気密性が要求された。当該部位に適用されるコンクリート には、温度ひび割れ防止の観点から低発熱性・低収縮性が求められ、また、各種配管、鋼材が高密度に配置される ことから高いレベルでの自己充塡性も要求された 1. 本報では、プラグコンクリートに用いた低発熱・低収縮高流 動コンクリートの特性につい

て報告する.

表-1 使用材料

2. 実験概要

(1) 使用材料および配合

使用材料を**表-1** に, コンクリ ート配合を**表-2** に示す. レディ ーミクストコンクリート工場 (以下,プラント) は現場から

使用材料	記号	プラント	種類	摘要					
水	W	A,B	工業用水	-					
セメント	С		低熱ポルトランドセメント	密度;3.24g/cm³, 比表面積;3,430cm²/g					
混和材	EX		膨張材	密度;3.16g/cm ³ , 比表面積;3,450cm ² /g					
/比个1177	LP		石灰石微粉末	密度;2.70g/cm³, 比表面積;4,000cm²/g					
細骨材	S	Α	海砂:砕砂=7:3	表乾密度;2.56g/cm³, 吸水率;1.55%, 粗粒率;2.72					
		В	海砂:砕砂=5:5	表乾密度;2.57g/cm³, 吸水率;41.98%, 粗粒率;2.75					
粗骨材	G	A B	砕石1505:砕石2015=5:5	表乾密度;2.64g/cm³, 吸水率;0.55%, 粗粒率;6.75					
祖刊初			砕石1505:砕石2015=5:5	表乾密度;2.78g/cm³, 吸水率;0.54%, 粗粒率;6.68					
混和剤	SP	A,B	高性能AE減水剤	ポリカルボン酸系					
	VA		分離低減剤	天然バイオポリマー					

の距離、設備、体

制および過去の

実績等を考慮し, 2つのプラント を選定した.セメ

表-2 コンクリート配合

プラント	自己 充填性	スランプ	水結合 材比	水粉体 容積比 (%)	空気量 (%)	単位粗骨材 絶対容積 (m³/m³)	単位量(kg/m³)							
7 721	のランク	(cm)	(%)				V	С	EX	LP	S	G	VA	SP
Α	т	70	55.0	77.0	4.5	290	171	297	14	337	698	746	0.342	8.4
В	1	70	55.0	77.0	4.5	290	171	297	14	337	701	806	0.342	11.0

ントには低熱ポルトランドセメントを用い、混和材とし ___ て石灰石微粉末,収縮補償を目的に膨張材を用いた.膨 張材の単位量は、その使用量を水準として拘束膨張及び 収縮試験(JIS A 6202 附属書 2: B法)を実施し、材齢 7日の膨張ひずみが $150\sim250\,\mu\,\mathrm{m}$ となる量を選定した.

(2) 練混ぜ方法

室内試験では水平二軸強制練ミキサ(容量 50L)を使 用して,水(高性能 AE 減水剤を含む),粗骨材以外の材

試験項目	試験方法	目標値	室内	圧送	摘要
スランプフロー試験	JIS A 1150	700±50mm	0	0	練上り直後
空気量試験	JSCE-F513	4.5 ± 1.5%	0	0	"
コンクリート温度	JIS A 1156	20°C	0	0	"
間げき通過性試験	JSCE-F511	300㎜以上	0	0	ランク1
凝結時間試験	JIS A 1147	ı	0	ı	
圧縮強度(σ28)	JIS A 1108	$21N/mm^2$	0	0	
静弾性係数	JIS A 1149	ı	0	ı	
引張強度	JIS A 1113	ì	0	ı	
熱特性試験	熱拡散係数, 比熱,	熱伝導率など	0	ı	
断熱温度上昇試験	_		0	_	
自己収縮試験	埋込み式ひずみ	ゲージによる	0	-	

表-3 試験項目

料を投入し空練り10秒, 水を投入後90秒, 粗骨材を投入後90秒, 5分静置後, 60秒間練り混ぜて排出した. 練混 ぜ量は 1 バッチ $30\sim45$ L とした. 圧送試験においては実機ミキサ (水平二軸強制練ミキサ, 容量 $2.5 \,\mathrm{m}^3$) を使用し、 モルタルで 60 秒, 粗骨材を投入後 120 秒練り混ぜた. 練混ぜ量は 1 バッチ 2. 25 m³ とした.

(3) 試験項目および方法

室内試験, 圧送試験で実施した試験項目を表-3, 圧送試験の配管概要図を図-1 に示す. 輸送管に圧力センサーを 配置して、管内圧力を連続的に計測し、輸送管 1mあたりの圧力損失を算出した。なお、圧送試験ではプラントの 製造能力の把握も合わせて行った.

キーワード 低発熱性,低収縮性,高流動コンクリート,マスコンクリート,圧送

連 絡 先 〒162-0825 東京都新宿区神楽坂 1-15 日本海上工事(株)水工事業部 TEL03-6327-2571

3. 試験結果

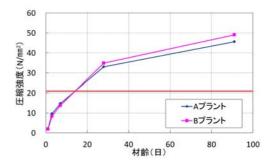
(1) 室内試験

各プラントの試験結果一覧を表-4、ス ランプフローの経時変化を図-2, 圧縮強 度試験結果を図-3に示す. コンクリート は経過時間 90 分まで良好な流動性を有 し, また, 設計基準強度を十分満足する ことを確認した、自己収縮の測定結果を図-4 に示す. 膨張材により膨張ひずみが導入され, その後の自己収縮も極めて小さい値となった.

(2) 圧送試験

圧送試験の結果を表-5に示す. 圧送速度 20, 40m³/hにおける吐出効率は高く、水平圧力 損失,垂直管の圧力損失は既往のデータ2)と 同等以下であった. また, 圧送試験時に実施 したスランプフローの試験結果を図-5 に示 す. 各工場から現場までは,約1時間程度かか るものの、コンクリート性状の変化は小さく、 安定した性状であった. なお, 前述の練混ぜ

量,練混ぜ方法でコンクリ ートを製造したとき,材料 の排出, 積込みを含めて1 バッチ 195 秒であったこ とから,30m³/h製造・出 荷が可能であることを確 認した.


室内, 実機試験を経て選

4. まとめ

750 E 700 スランプフロー 650 600 月/基値 700±50mm 550 500 ◆ Aプラント 想定した運搬時間 60分 450 ・ドブラント 400 30 60 経過時間(分)

800

圧縮強度試験結果 図-3

定した低発熱・低収縮高流動コ ンクリートの各種物性を測定し, さらに圧送試験に供することで 実施工に問題なく使用できるこ とを確認した.また,全5回の プラグコンクリートの実施工に おいても, 品質の安定したコン クリートを供給でき、トラブル なく施工を終了した.

参考文献 1) 柳井ら:配管竪坑プラグコ ンクリートの施工実績, 土木学会第 68 回年次学 術講演会講演概要集, 2013.9

2) 土木学会: コンクリートライブラリー135, コ ンクリートのポンプ施工指針[2012年版], 2012.6

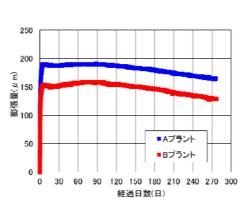


図-4 始発からの自己収縮

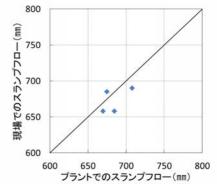
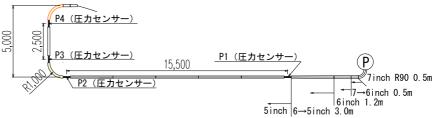



図-5 スランプフロー試験結果

表-5 圧送試験結果

設定吐出量	実吐出量	吐出効率	水平管1m当りの管内	水平換算係数		
(m^3/h)	(m^3/h) (%)		圧力損失(N/m²/m)	ベント管	上向き垂直管	
42.0	38.9	93%	0.072	1.23	1.31	
20.7	20.7	100%	0.032	1.16	1.65	

配管概要図 図-1

表-4 室内試験結果一覧

プラント 項目		Α		В						
スランプフロー(練り上り直後)		705mm		710mm						
空気量(練り上り直後)		5.0%		4.7%						
コンクリート温度(練り上り直後)		20°C		20°C						
間げき通過性(U型)		354mm		354mm						
凝結時間 始発/終結		6:44/9:34		7:56/10:37						
圧縮強度(σ ₂₈)	;	33.0N/mm	2	34.9N/mm^2						
静弾性係数(σ ₂₈)	32.1kN/mm ²			31.9 kN/mm 2						
静弾性係数と圧縮強度の関係	$0.301 \times f'c(t)^0.649$			0.296×f'c(t)^0.661						
引張強度(σ ₂₈)	3.90N/mm^2			4.24N/mm^2						
引張強度と圧縮強度の関係	$0.152 \times f'c(t)^0.825$			$0.148 \times fc(t)^0.835$						
熱拡散係率	$0.82 \times 10^{-6} \text{m}^2/\text{s}$			$0.73 \times 10^{-6} \text{m}^2/\text{s}$						
比熱	1.11kJ/kg°C			1.14kJ/kg°C						
熱伝導率	2.08W/m°C			2.08W/m°C						
熱膨張係数	7.85 <i>μ</i> m/°C		7.64 μ m/°C		С					
断熱温度上昇特性	Q_{∞}	α	β	Q_{∞}	α	β				
(打込み温度22.3℃)	44.9°C	0.437	0.702	42.9°C	0.423	0.756				
·		fc(t)・材齢t日におけるコンクリート圧縮強度								