RCはり部材の局所的な鉄筋腐食が曲げ耐荷性状に及ぼす影響

長岡工業高等専門学校	学生会員	○坂井	亮磨
長岡工業高等専門学校		金子	生樹
長岡工業高等専門学校	正会員	村上	祐貴

1. はじめに

RC 構造物に生じる劣化現象は様々あるが, 塩害 による鉄筋腐食は, 比較的起こりやすい劣化現象で あり, 構造性能に直接的な影響を及ぼすことが多い.

実構造物における鉄筋腐食は,単一部材の中でも 場所によって外部環境が異なることにより,局所的 に発生する場合が多いが,局所的な鉄筋腐食が変形 性能や耐荷性能等の構造性能に及ぼす影響につい ては未解明の部分が多い.

そこで、本研究では局所的な鉄筋腐食が RC はり 部材の曲げ耐荷性状に及ぼす影響を明らかとする ことを目的として、腐食率および腐食領域を実験パ ラメータとし、電食により主鉄筋に局所的な鉄筋腐 食を導入した RC はり部材の載荷実験を行った.

2. 実験概要

2.1. 試験体概要

試験体の形状寸法および配筋は図−1 に示す通りであり,曲げ破壊が先行する断面諸元とした.

実験パラメータは表-1に示すように,主鉄筋の 腐食率および腐食発生位置である.設定腐食率は表 -1に示す4水準である.発生領域は100mmであ り,その位置は,支間中央,スパン片側の支間中央 より375mm~475mmおよび675mm~775mmの3水準 とした.

本実験では局所的な鉄筋腐食を再現するため,あ らかじめ局所的に腐食を導入した主鉄筋を用いた. なお,腐食領域には,腐食ひび割れの発生による付 着劣化を模擬するため,アンボンド処理を施した.

2.2. 腐食試験手法および載荷試験方法

腐食手法は, 電食試験法を採用した.

載荷試験は、図-1に示すように、静的2点集中 載荷による曲げ載荷試験とし、変位制御 (0.5mm/min)で行った.また、1/100mm変位計を 試験体中央に設置し、支間中央部のたわみの測定を

表-1 実験パラメータおよび実験結果

試験体名	設定腐食率 (%) 腐食管		減 平均腐食率 ^{※1} 最	最大腐食率 ^{※1}	E縮強度	最大荷重 (LN)	示方書算定値			
		腐食領域 平均腐食率 (%)					曲げ引張破壊時の荷重(kN)		斜め引張破壊時	破壊モード
			(%)	(11/11/11/11)	(KIN)	等曲げ区間	腐食領域	の荷重(kN)		
S0-0					30.0	66.5	57.6	_	60.2	曲げ引張
S0a-10	10		11.2	14.9	30.0	61.0	55.5	80.0	56.3	斜め引張
S0a-20	20	а	20.4	26.6	27.5	53.0	54.4	68.6	51.9	斜め引張
S0a-40		Ī	38.5	46.7	30.0	44.0	54.5	50.8	47.8	斜め引張
S0b-40	40	b	40.7	56.9	31.0	62.0	56.0	128.0	45.5	曲げ引張
S0c-40	S0c-40	С	46.7	55.7	31.4	38.0	24	.9	45.2	破断

※1 3D レーザースキャンの断面計測値を補正し算出した腐食率

キーワード 鉄筋腐食,局所腐食,曲げ耐力

連絡先

〒940-8532 新潟県長岡市西片貝町 888 番地 長岡工業高等専門学校 TEL0256-34-9276

-494

行った.

鉄筋腐食の評価手法は断面減少率を用いた. 断面 減少率は, 3D レーザースキャンを用いて鉄筋を 0.4mm ピッチで測定した値と非腐食時の鉄筋の断 面積より算出した.

3. 実験結果

3.1. 鉄筋の腐食状況

図-2に3Dレーザースキャンにより計測した腐 食対象領域の鉄筋の平均断面積と腐食前後の主鉄 筋の質量減少量から式(1)を用いて算出した鉄筋断 面積(A_{s-cor})との比較を示す.

$$A_{s-cor} = \frac{W_b}{\rho_s l} - \frac{W_b - W_a}{\rho_s l_{cor}}$$
(1)

ここで, ρ_s :鉄筋密度(7.85g/cm³),l:主鉄筋長(mm), l_{cor} :腐食対象領域長(mm), W_b :腐食前の主鉄筋の 質量(g), W_a :腐食後の主鉄筋の質量(g)である.

3D レーザースキャンの計測値は,式(1)より算出 した値に比べて約 4.0%大きい値を示す傾向にあっ た.そこで,本実験では,式(1)より算出した値が 真の値であると仮定し,3D レーザースキャンの断 面積計測結果に補正係数 0.96 を乗じて断面減少率 を算出し,以降の検討では,この値を腐食率とする.

3.2. 載荷試験結果

表-1に載荷試験結果の一覧を示す.また,図-3に荷重と中央変位の関係を示す.図-3より,全 ての腐食試験体で非腐食試験体(S0-0 試験体)と比 べ剛性および変形性能の低下が確認された.

非腐食試験体である S0-0 試験体は,設計通り曲 げ引張破壊を呈した. S0a-10 試験体, S0a-20 試験 体および S0a-40 試験体は,鉄筋降伏した後,斜め 引張破壊を呈した.また,腐食率が大きくなるに従 い,最大荷重の低下は大きくなることが確認された. S0b-40 試験体については,等曲げ区間にて曲げ引張 破壊を呈した.S0c-40 試験体については,鉄筋降伏 後も緩やかな荷重の増加が確認される.これは,鉄 筋降伏した後,腐食領域の鉄筋が直ちにひずみ硬化 域に達したためであると考えられる.最終的に腐食 領域の主鉄筋が破断して破壊に至った.

4. 局所的な鉄筋腐食が耐荷力に及ぼす影響

上述したように、本実験の範囲内では、せん断ス パンの局所的な鉄筋腐食により、破壊モードが非腐 食時のモードとは異なる場合のあることが確認さ れた. 表-1 に、各腐食試験体の等曲げ区間および 腐食領域における、曲げ破壊時の荷重と斜め引張破 壊時の荷重を算出した結果を示す.算出に際し、コ ンクリートの圧縮強度、鉄筋の降伏強度(369N/mm²) および主鉄筋量(鉄筋の密度を 7.85g/cm³とし、非 腐食時の質量より算出した)は実験値を用い、腐食 領域においては、主鉄筋断面積を最大腐食率分減少 させ、平面保持を仮定して土木学会標準示方書に基 づき算出した.

S0a-10 試験体を除く斜め引張破壊を生じた試験 体において,腐食領域における斜め引張破壊時の荷 重が最も小さい値を示した.S0b-40 試験体について は,斜め引張破壊時の荷重が最も小さくなっている が,腐食発生位置が支点近傍であったため曲げ引張 破壊を呈したと考えられる.なお,S0a-10 試験体は, 算定値では等曲げ区間で破壊を生じる結果となっ たが,実際は斜め引張破壊を呈した.このように, 局所的な鉄筋腐食は,発生位置や腐食程度によって 破壊モードが示方書算定結果とは異なる可能性の あることが確認された.これは,局所的に腐食した 領域への変形の集中により,耐荷機構が非腐食時の はりと異なるためであると考えられる.

5. 結論

-988-

以下に本研究で得られた知見を示す.

(1) 本研究の範囲内では、せん断スパンに局所的 な鉄筋腐食を生じた場合、部材全体の破壊モ ードが変化する場合のあることが確認された.