Accumulated SIBIE によるコンクリート部材の厚さ評価のための可視化手法

大阪大学大学院 学生会員 〇李 興洙 立命館大学 正会員 内田 慎哉 大阪大学大学院 正会員 鎌田 敏郎 学生会員 西上 康平 東北学院大学 正会員 李 相勲

1. はじめに

著者らは、衝撃弾性波法による計測を有限要素法による 衝撃応答解析を用いてシミュレーションし、解析で得られ た周波数スペクトルを対象として、調査対象断面内におけ る弾性波の反射源を画像化することが可能な SIBIE¹⁾ に対 して周波数スペクトルの平滑化、入射角補正および画像の 重畳処理を新たに加えた「Accumulated SIBIE」を適用し、

コンクリート部材の厚さが一定のモデルを 2 次元画像によ り可視化する非破壊評価手法の検討を行ってきた²⁾. その 結果,部材の底面を 2 次元の可視画像として適確に把握で きることがわかった.しかしながら,上記の検討では,部 材の底版部分が傾斜したモデル(以降,変断面モデルと呼 ぶ)に関する本手法の適用可能性については不明確のまま であった.

そこで本研究では、変断面モデルにおける底版部分を、2 次元の画像として可視化し、厚さの違いが本手法に与える 影響について把握することを目的とした.

2. Accumulated SIBIE による可視化の原理

この手法は、まず、複数点で算出した周波数スペクトル それぞれに対して①平滑化を行った後、②SIBIE により弾 性波の反射源を画像化する.その後、各画像に対して③入 射角補正により反射強度を再計算する.最後に、全画像を ④重畳し、調査対象断面の2次元画像を求める.以下にそ れぞれの詳細を示す.

(1) 周波数スペクトルの平滑化

受信波形に対してラグ・ウィンドウによる処理後に高速 フーリエ変換を行うことで平滑化処理を行った.

(2) SIBIE¹⁾

対象断面を図1 に示すように正方形要素に分割する. 続いて,弾性波の入・出力位置と要素中心との距離*R*(=r1+r2)に対応した換算共振周波数*f*_Rを次式により算出する.

$$f_R = C_p / R \tag{1}$$

この式により求めた換算共振周波数を、衝撃弾性波法によ り算出した周波数スペクトル上から検出し、その強度を各 要素における反射強度と設定し、弾性波の反射源を可視化 する.

(3) 入射角補正

加速度センサの感度を考慮し,要素全てに対して,各要素の反射強度に方向余弦(図1中のθ)を乗じて垂直成分 を求め,これを反射強度と再定義した. ①および③単独で の効果を確認するため、②のみで求めた画像との比較を行った(図2参照).

(4) 画像の重畳

複数の断面画像における各要素の反射強度をそれぞれ足 し合せ(重畳),1枚の2次元画像を求めた.

3. 衝撃応答解析の概要

衝撃弾性波法による計測を有限要素法による衝撃応答解 析を用いてシミュレーションした.図3に解析モデルを示 す.本研究で対象としたモデルは、変断面モデルである. モデルの平面ひずみ要素として計算した.また、モデル両 側面において弾性波が反射しないように、モデル両端部の 全ての節点を無反射となるように設定した.モデルの要素 寸法は、連続体中の弾性波の伝播と時間増分との関係式 (クーラン条件)に基づき 10×10(mm)とした.衝撃荷重の 入力は図3に示す部材上面とし、端部から100mmの位置に ある節点(端部 A)から1700mmの節点(端部 B)まで 100mm 間隔で入力位置を走査した.したがって、入力位置 は計17点となる.

キーワード 衝撃弾性波法,非破壊試験,コンクリート版厚, Accumulated SIBIE, 可視化, 衝撃応答解析 連絡先 〒565-0871 大阪府吹田市山田丘 2-1 大阪大学大学院 工学研究科 地球総合工学専攻 TEL 06-6879-7618

弾性波の出力位置は、いずれの入力の場合も、入力位置から 50mm 離れた節点とした.

4. 衝撃応答解析の結果および考察

図4に、変断面モデルで得られた周波数スペクトルの一 部を示す.図中に示す矢印は、出力点直下のコンクリート 厚さに相当する縦波共振周波数を示している.縦波共振周 波数の位置にピークが出現しているものの、依然として縦 波共振周波数よりも高い周波数領域において、縦波共振周 波数の位置に出現したピークと同程度あるいはそれよりも 大きい強度を有するピークも複数出現している.しかもこ のような傾向は、コンクリートの厚さが小さくなるほど、 また既往の研究での版厚一定モデルよりも顕著となってい る.この原因としては、底面が水平でないことにより、底 面で反射して出力点で受信される弾性波の成分が減衰した ことが挙げられる.

5. Accumulated SIBIE による可視化

図5 に変断面モデルにおいて得られた可視化画像の結果 を鋼球直径ごとに示す. 図5より,底面が水平でない場合 であっても、Accumulated SIBIE により部材底版部を可視化 できることが明らかとなった. ただし, 鋼球直径 6.4mm の 場合は表層部分において鋼球とコンクリート表面との接触 に起因すると考えられる反射強度の高い領域が存在する. また、鋼球直径の違いによりコンクリート内部へ入力でき る弾性波の周波数範囲が異なるため、画像内の反射強度の 高い領域が直径によりそれぞれ異なっていることがわかる. これらの影響を改善するため、先の版厚一定モデル同様に 各鋼球直径で得られた画像を重畳処理することとした. そ の結果を図6に示す.図に示す可視化画像において、表層 部分における反射強度が、図5のそれと比較して小さくな っていることがわかる.また,選択した鋼球直径ごとに異 なった深さに出現していた反射強度の高い領域は、一つの 可視化画像にまとめることで、概ね底版位置においてのみ 出現していることが確認できる.

6. まとめ

本研究では、衝撃弾性波法による計測を有限要素法によ る衝撃応答解析を用いてシミュレーションし、解析で得ら れた周波数スペクトルに対して Accumulated SIBIE を適用し て、コンクリート部材の版厚を 2 次元画像により可視化す ることを試みた.その結果、厚さが変化するモデルにおけ る底版部分を、2 次元の画像として可視化できることを明 らかにした.

参考文献

- Ohtsu, M. and Watanabe, T.: Stack imaging of spectral amplitudes based on impact-echo for flaw detection, *NDT&E Int.*, Vol.35, pp.189-196, 2002
- 西上康平,内田慎哉,鎌田敏郎,李興洙: Accumlated SIBIE によるコンクリート部材厚さの可視化のための 非破壊評価手法,平成 25 年度土木学会関西支部年次 学術講演会