非線形超音波法に基づくコンクリート中の接触界面の評価手法に関する基礎研究

7	大阪大学大学院工学研究科	学生員	〇門田 篤	立命館大学理工学部	正会員	内田	慎哉
7	大阪大学大学院工学研究科	正会員	鎌田 敏郎	大阪大学大学院工学研究科	学生員	加藤	大基

1. はじめに

コンクリート内部の接触界面(ひび割れ)の評価手 法の1つに超音波法がある.この手法では、図1に示 すひび割れが完全に開口した状態のひび割れが評価対 象となる. そのため, ひび割れ面が接触した状態のひ び割れ(図2参照)を評価することは困難である.

これに対して、金属分野においては、鋼材における 閉口したひび割れの評価に対して,超音波の非線形性 を活用した手法(「非線形超音波法」)に関する研究 が行われている¹⁾.非線形超音波法は、大振幅の超音 波を入射し、閉口したひび割れ部分を強制的に開閉口 させ、この閉閉口振動をセンサで計測することにより、 閉じたひび割れを評価する手法である.具体的には、 閉口したひび割れを弾性波が透過すると、透過波形に 「ひずみ」が生じ、これに伴い受信波の周波数スペク トル上に入射周波数の整数倍の位置にピーク(「高調 波」)が出現する.これらを評価指標とすることで, 閉口したひび割れを評価することが可能となる.しか しながら現状では、コンクリート分野へ非線形超音波 法を適用した事例はほとんど無い.

そこで、本研究では、非線形超音波法に着目し、コ ンクリート中の接触界面における非破壊評価への非線 形超音波法の適用可能性について把握することを目的 とした.実験では、モルタル供試体2体を突き合わせ た際に形成される界面の接触状態の違いが「受信波 形」および「高調波成分の出現」に与える影響につい ての検討を行った.

2. コンクリート用非線形超音波法装置の概要

本研究で製作した非線形超音波法装置を写真1に示 す.この装置は、金属分野における汎用装置を、コン クリートへ適用できるように改良したものである. 主 な改良点としては, コンクリート中における弾性波の 減衰を考慮して、印加電圧の最大値:1800V とし、入 力周波数の帯域: 20kHz~1MHz, 受信周波数の帯域: 15kHz~20MHz の間でそれぞれ設定できるものとした.

3. 実験概要

3.1 供試体

写真 2 に供試体を示す.供試体は、100mm×100mm ×50mm の寸法のモルタル(W/C=50%)を2体作製し た後,両者の各1面(100mm×100mm)をそれぞれ突 き合わせることにより閉口したひび割れを模擬したも のである. 閉口するひび割れ部分(突き合わせ面)に は, 超音波探傷試験で使用される接触媒質と滑石を主 原料とするタルカムパウダー(以降,パウダー)をそ れぞれ介在させ、接触界面の状態に2ケース設けた. すなわち、接触媒質の場合は界面状態が「密着」であ ると考えられ、パウダーでは「微小空隙」を想定して いる.

図1 開口したひび割れ

図2 閉口したひび割れ

新たに製作した非線形超音波法装置 写真 1

キーワード コンクリート,非線形超音波法,ひび割れ,接触界面,高調波 連絡先 〒565-0871 大阪府吹田市山田丘 2-1 大阪大学大学院 工学研究科 地球総合工学専攻 TEL06-6879-7618

3.2 非線形超音波法による計測

計測状況を写真 2 に示す.供試体上面にはコンクリ ート用超音波発信探触子を,下面には受信探触子をそ れぞれ設置した.探触子の中心周波数はいずれも 500kHz である.写真 1 に示す非線形超音波装置によ り周波数 300kHz の正弦波を 10 波生成させた.発信探 触子を介してこれをトーンバースト波としてモルタル 中へ弾性波を発信させ,モルタル中を伝搬した弾性波 を下面に設置した探触子で受信した.

4. 実験結果および考察

4.1 受信波形

図3に入射波の波形を、図4には介在物が接触媒質の場合に受信した波形をそれぞれ示す.いずれの波形 も、取得した全波形の一部を拡大したものである.接 触媒質を透過した受信波形は、入射波のそれと比較す ると、波形の一部にひずみが生じていることが確認で きる(図4中の〇).なお、パウダーの場合も波形に ひずみが生じていた.

4.2 周波数スペクトル

図5および図6に,入射波および接触媒質を透過した受信波の周波数スペクトルをそれぞれ示す.入射波の周波数スペクトルには,装置で設定した入射周波数である300kHzに単独のピークが出現している.これに対して,接触媒質の場合では,入射周波数以外に入射周波数の2倍および3倍の周波数の位置にもピーク(高調波)が出現していることがわかる(図6中の矢印).

4.3 高調波スペクトル強度

周波数スペクトル上に出現した高調波成分を数値デ ータとして表現し,接触界面の接触状態の違いを定量 的に評価するために,「高調波スペクトル強度比」を 算出した.これは,入射波の周波数スペクトル上で出 現したピーク(入射周波数)の強度に対する2次およ び3次の高調波成分の強度を加えたものの比として定 義した.各介在物において算出した高調波スペクトル 強度比を図7に示す.接触媒質のスペクトル強度比が パウダーのそれよりも大きくなった.接触界面の状態 が「密着」している場合は,「微小空隙」の場合と比 較して,透過する弾性波による界面の開閉口振動が大 きくなり,高調波がより励起されたものと考えられる.

5. まとめ

1) コンクリート用に新たに製作した非線形超音波法装

図7 高調波スペクトル強度比

置を用いることで、モルタル供試体の接触界面にお いて、「受信波形のひずみ」および「高調波成分が 出現」することを明らかにした.

- 「高調波スペクトル強度比」は、接触界面における 接触状態の違いにより変動する評価パラメータであ ることもわかった.
- 3)以上より、非線形超音波法のコンクリート分野での 適用可能性が示唆された.

謝辞

本研究は、日本学術振興会科学研究費補助金(挑戦 的萌芽研究 24656271)の援助を受けて行なったもので ある.また、非線形超音波法装置は、インサイト株式 会社の協力により製作したものである.ここに記して 謝意を表する.

参考文献

 例えば、林高弘ら:ポンピング波によるき裂開閉口 を利用した非線形超音波非破壊検査、非破壊検査、 第58巻、5号、pp.196-201、2009