CFRP 格子筋と吹付けモルタルによる梁部材のせん断補強

首都大学東京 学生会員 〇菊池 亮,正会員 宇治 公隆 首都大学東京 正会員 上野 敦,正会員 大野 健太郎,正会員 張 軍雷

1. はじめに

既設コンクリート構造物の機能回復・向上を目的として,連続炭素繊維(Carbon Fiber Reinforced Plastic)格子 筋(以下,CFRP 格子筋)を配置し、ポリマーセメントモルタルを吹き付ける補修・補強工法が用いられてい る。本研究では、補修界面のせん断耐荷挙動を検討するため、RC 梁供試体を用いた 2 点集中載荷試験を行っ た。また、試験には、アコースティック・エミッション(以下,AE)法を導入して、付着界面での破壊機構を 検討した。

2. 実験概要

2.1 使用材料

使用材料ならびにその力学的特性を表-1に示す。母材 コンクリートには早強ポルトランドセメントを用い,吹付 けモルタルには,短繊維を混合した SBR 系ポリマーセメン トモルタルを使用した。また,コンクリートと吹付けモル タル間に, EVA 系エマルジョンを主成分とするプライマー を塗布した。

2.2 供試体

供試体の設計は 2007 年度版コンクリート標準示方書に 従い,安全係数を 1.0 とした。また,補修界面の付着が十分 であり,格子縦筋がスターラップと同様にせん断力に抵抗 するものと仮定した。なお,計算において,横筋のせん断耐 力は無視した。CFRP 格子筋は降伏点を持たないため,公称 引張強度の 2/3 の値を降伏値の代替として用いた。RC1 と RC2 は,せん断補強筋の総断面積が同程度となるよう設計 した。RC 梁供試体諸元を表—2,供試体概要を図—1に示 す(格子筋のひずみ計測位置は図—3 に示す)。母材材齢 8 日 目にアルミナブラストにて補修界面の表面処理を行い, CFRP 格子筋をアンカーとワッシャーで仮留めした後,プラ イマーの塗布,モルタルの吹付け(20mm 厚)を行った。

2.3 試験方法

試験は、2 点集中荷重による曲げ載荷とし、曲げひび割れおよび斜めひび割れを目視で確認した後、それぞ れ一旦 5kN まで除荷し、その後、3 サイクル目で終局まで単調載荷した。載荷時に鉄筋および各せん断補強筋 のひずみ計測を行うとともに、16 個の AE センサを用いて AE 計測を行った。

3. 実験結果および考察

実験結果を表—3 に示す。せん断補強した RC2 の終局強度(757kN)が RC1(690kN)よりも高いことから, CFRP 格子筋によるせん断補強効果が見込めることがわかった。せん断補強筋として CR8 のみを使用した RC3 においても、破壊荷重は、計算値を上回っている。

キーワード CFRP 格子筋, 吹付けモルタル, RC 梁, せん断抵抗, AE 法 連絡先 〒192-0397 東京都八王子市南大沢 1-1 首都大学東京 042-677-1111

表—1 使用材料の力学的特性

	圧縮強度(N/mm²)	弹性係数(kN/mm²)	割裂引張強度 (N'mm²)
コンクリート(材齢25日)	34.1	31.9	2.92
モルタル(材齢13日)	36.7	30.1	2.87

	種類	断面積(mm²)	降伏強度(N/mm²)	引張強度(N/mm²)	備考
	D32	794.2	389	587	主鉄筋
鉄筋	D10	71.33	413	561	スターラップ(RCl) 圧縮鉄筋
	D6	31.67	417	570	スターラップ(RC2)

CFRP格子筋	種類	断面積(mm²)	公称引張強度(N/mm²)	公称弹性係数(kN/mm²)	備考
(格子間隔100mm)	CR8	26.5	1400	100	せん断補強筋

図-1 RC 梁の供試体概要(RC2 の場合)

表—3 実験結果

鱡体	曲げひび割れ発生荷重(LN) 斜めひび割れ発生荷重(LN)		終局荷重(kN)		计读书线	法主	
	実験値	設計値	実験値	設計値	実験値	钢质形態	佣与
RC1	140	198	210	377	690	せん断破壊	
RC2	70	235	320	679	757	せん断破壊	
RC3	40	235	225	598	617	せん断破壊	格子筋に沿ったひび割れが75kNで発生

RC2 を代表例に RC 梁の破壊機構について考察する。図 果を示す。RC2 では斜めひび割れ発生荷重(320kN)で AE イベ ントは高さ中央に集中し(図-2(a)),荷重が増加するにつれ てAEイベント位置が移行する傾向が認められる(図-2(b))。 図-3 に CFRP 格子筋のひずみ計測位置とひび割れ状況,図 -4に格子筋のひずみを示す。図の(a)および(b)より、縦筋 のひずみは、部材中央付近の No.9, 10 あるいは 15, 16 で大 きく、上下方向に向かって小さくなっていることがわかる。 図-5にRC2のせん断補強筋の荷重-ひずみ曲線を示す。斜 めひび割れ発生後、格子縦筋はスターラップとともにせん断 荷重を受け持ち,ひずみが増加している。550kN付近で格子 縦筋 16 が破断ひずみに達しているが、荷重の低下を生じる ことなく、さらに荷重は増加させることができた。これより、 縦筋の一部が機能しなくなっても,格子点を介して横筋から 他の格子縦筋への荷重の分配が行われたと推察される。ま た,図-4(c)において,最大荷重に達した後,荷重の低下と ともに計測位置7のひずみが増加している。これは、せん断 破壊時に、局所的にエネルギーが解放され、主破壊となるひ び割れがこの位置で発生したためと考えられる。

4. まとめ

CFRP 格子筋と吹付けモルタルによる補強供試体を用い,2点集中荷重により載荷試験を行った結果,CFRP 格子筋は母材内部のスターラップと分担してせん断荷重に抵抗することが明らかとなった。終局段階で縦筋の一部が機能できなくなっても,格子点を介して,他の格子縦筋で応力を分担できると考えられ,本工法はせん断補強に有効であるといえる。

[謝辞] 本実験にあたりご協力いただきました, FRP グリッド工法研究会殿に深く感謝いたします。