等分布荷重を受ける RC 梁部材のせん断破壊解析に関する一考察

大阪市立	之大学大学院	学生	主員	〇北川	晴之
(株)日建	認計シビル	正名	会員	川満	逸雄
大阪市立大学大学院工学研究科	正会員	鬼頭	宏明	,角掛	久雄

1.はじめに

重要度の高い RC 構造部材の設計において、等分 布荷重を受けて、せん断破壊に至る部材の耐力なら びに破壊形式を適切に評価することは、一般的に難 しいとされている[1]. その一方で, 原子力発電所の 屋外構造物で、地中に埋設されている土圧の分布作 用を受ける地中ダクトなどでは、せん断補強筋が少 ないケースが珍しくなく, せん断破壊が起こりやす い. そこで文献[1](以下マニュアルと呼ぶ)では、上 述のような部材に対して,現在普及しつつある性能 照査型設計[2]の一手法として、有限要素法によるシ ミュレーションと模型実験[3,4]の適用を提示してい る. ここでは、マニュアルに例示された模型実験結 果[3, 4]に対し,汎用コードによる材料非線形有限要 素解析を行い、考察を加える、着目点は、このよう な離散化手法に基本的に影響を与える要素分割(場 の離散化)と荷重増分(特に塑性化後のひずみ増分量) の二者である.なお,その他は材料の特性値の設定 を除き、デフォルトを使用した.

図-1 分布荷重を受ける RC 梁部材例(1/2 領域)

2.解析概要

まず,解析対象はマニュアルの分布荷重作用下で せん断破壊する RC 梁部材の 8 ケース(No. I ~ Ⅷ)で ある.詳細を表-1 に,載荷例を図-1 に示す.また解 析上で分布荷重を変位制御で与えられないので,荷 重制御で各載荷点に一定の荷重増分を与えるとした.

次に,使用した汎用コードは,コンクリート構造 物非線形 FEM 解析プログラム FINAL[5]である.構 成則は,コンクリートでは圧縮側が修正 Ahmad モデ ル,引張側が出雲モデル,一方鉄筋ではバイリニア モデルを適用している.またコンクリートは四辺形 要素,鉄筋は線材要素を用い,鉄筋とコンクリート の付着は剛結としている.

最後に,解析パラメータは,要素分割(有効高さに 対する分割)と増分割合(1STEP での荷重増分/算定せ ん断耐力)とした.そして既往研究[6]を基に予備解析 を行い,各8ケースに対して,要素分割5,10と増 分割合2,3,5,7×10⁻³の計8(2×4)パターンと決定 した.このパラメータに対して各ケースの解析結果 より,耐力や破壊性状の検証を行う.また実験結果 [3,4]より,全ケースにおいて,まず1次のひび割れ が,終局時に2次のひび割れが発生し,破壊に至る という特徴がある(図-3).検証を行う上で,両ひび割 れの確認ができるものを適切な破壊形式とした.

云-1 用作们 木 IT													
Case	スパン (m)	部材幅 (m)	部材厚 (m)	有効部 材厚 (m)	コンク リート圧 縮強度 (N/mm ²	主筋降 伏強度 (N/mm ²)	引張鉄 筋比	軸力比	せん 断 筋 比	せん断 補強筋 降伏強 度	P'/P	せん断 耐力(支 <u></u> (kN)	着目点
No. I	1.00	0.15	0.30	0.25	32.30	363	0.041	0	0	0	0	165	No.I~Vの基本ケース
No. II	0.50	0.15	0.30	0.25	41.40	363	0.041	0	0	0	0	333	公本古重た受けるスパンの効果
No.Ⅲ	1.50	0.15	0.30	0.25	41.70	363	0.041	0	0	0	0	127	万川何里を受けるへんりの効果
No.IV	1.00	0.15	0.30	0.25	33.60	363	0.041	0	0	0	1.5	188	エーシル公布の効用
No.V	1.00	0.15	0.30	0.25	36.20	363	0.041	0	0	0	2	163	
No.VI	1.00	0.16	0.30	0.26	33.70	511	0.035	0.1	0	0	1.5	273	No.VI~IIIの基本ケース
No.VII	1.00	0.16	0.30	0.26	35.00	511	0.035	0.1	0.038	332	1.5	356	せん断補強筋の効果
No.VII	1.00	0.16	0.30	0.26	34.40	511	0.035	0.1	0	0	1.5	432	ハンチの効果

-261-

韶垢冬州

圭 1

キーワード 材料非線形有限要素解析,等分布荷重作用,RC梁,せん断破壊

連絡先

〒558-8585 大阪市住吉区杉本 3-3-138 大阪市立大学工学研究科 TEL06-6605-2723

図-4 ひび割れ図(左)と最小主応力図(右):Case No.IV

3.解析結果

前述の解析パラメータで 64(8×2×4)パターンの 解析を行った.妥当性の判断は,破壊形式として破 壊荷重時のひび割れ図,最小主応力図,さらに破壊 荷重を実験でのせん断耐力と比較することで行う.

例として、No.IVの要素分割 10, 増分割合 7×10⁻³ についての結果を図-4 に示す. このケースは反曲点 位置(曲げモーメントが零の位置)が1/4 スパンの位置 にあり,図-3,4の破線の位置である.

まず図-4(b)の最小主応力図より,載荷点から支点ま での応力流れである圧縮ストラットが確認できるが, 反曲点位置で応力の流れが途切れている.これは反 曲点位置の影響であり,他の解析パラメータやケー スの時も同様の結果を得た.また,ひび割れ図にお いては,図-3のような1,2次ひび割れの発生が確認 できる.これより,この解析パラメータでは,実験 での破壊形式を適切に表している.

次に、図-4 の(a)、(b)のひび割れ図より、解析においても、まず1次ひび割れが進展し、2次ひび割れの 進展後破壊が確認できた.よって、前述の実験での 破壊への推移と同じである.しかしこのひび割れの 進展は、全てのケースで確認できない.この推移が 確認できるのは、反曲点位置が支点上にないケース (No.IV~VIII)だけである.他のケース(No.I~III)では、 1、2次ひび割れが共に進展している.

破壊荷重の全解析結果に対する耐力比を表-2 に示す. 表では,不適切な破壊形式は灰色にしている.

表-2	耐力比(破壊荷重/けん断耐力)	١
1X-4		1

Case		增分割合				
	軸力	× 10 ⁻³	2	3	5	7
		要素分割 🔪				
lo. I	400	5	1.04	1.01		
		10	0.84	0.69	0.83	0.84
lo. II		5	1.30	1.22	1.24	1.31
		10			0.85	0.88
lo.Ⅲ		5	1.18		1.17	1.15
	711	10		0.92	1.06	1.03
lo.IV		5	1.14	1.24		
		10	0.75	0.83		0.88
lo.V		5	1.05	1.09	1.64	
		10	0.88	0.96	0.94	0.98
lo.VI	有	5	0.75	0.78	0.79	0.92
		10	0.76	0.74	0.78	0.84
lo.VII		5	1.13	1.10	1.11	1.11
		10	0.68	0.80	0.81	0.81
lo.VIII		5	1.17	1.18	1.19	1.20
		10	0.68	0.77	0.73	0.79

耐力が比較的異なっているケースでは、No. Iの要素 分割10, 増分割合3×10-3の様に, 曲げの影響を受け て,耐力が低下したものである.また No.VI~VIIの要 素分割10は、2次ひび割れまで進展せず、1次ひび 割れで破壊に至っているため、耐力が低下している 等の現象が見られる.結果として破壊荷重がせん断 耐力より±20%程度以上だと、上述のような傾向にあ り、妥当な評価が出来ない場合が多い.そして表-2 では耐力比が±20%以下で実験との整合性があるも のを斜体とした.また耐力比において増分割合の変 化による明確な傾向はなかったが、要素分割が荒く なると、せん断圧縮による影響のため、大きくなる 傾向がある. 軸力のない No. I~Vでは要素分割 10 で耐力比が比較的1に近く,適切な破壊形式になっ ているものが多い. 軸力のある No.VI~VIIでは, 前述 するように要素分割5で耐力比が1に近く, 適切な 破壊形式になっているものが多い.

4.まとめ

全8ケースについて解析を行った結果,軸力の有 無によって妥当な解析パラメータが分けられる.

具体的には、分布荷重作用時のせん断破壊型となる解析パラメータは、増分割合 5,7×10⁻³で、軸力の 無い場合は要素分割 10、軸力の有る場合は要素分割 5 とすることが好ましい.

参考文献 [1]土木学会:原子力発電所屋外重要土木構造物の耐震性 能照査指針・マニュアル, p.150, 2005.[2]土木学会:コンクリート標 準示方書(設計編), p.623, 2007.[3]遠藤ら:研究報告 U91052, p.63, 電力中央研究所, 1992.[4]宮川:研究報告 U02052, p.28, 電力中央研 究所, 2003. [5]伊藤忠テクノソリューションズ:FINALver.11,2004.[6] 内田ら:せん断破壊型 RC 梁の非線形有限要素解析による解析条件の 影響,平成 24 年度土木学会関西支部年次学術講演会, V-8, 2012.