第V部門

曲げ・せん断とねじりが同時に作用する RC 部材の破壊メカニズム

立命館大学 学生員 〇 小川 悠、加藤 慎介立命館大学 フェロー会員 岡本 享久

1. はじめに

1995年1月17日に発生した兵庫県南部地震による 数多くの土木構造物の崩壊は日本のみならず世界にも 大きな衝撃を与えた。当時の写真を入手し,約200体 の写真による観察を行ったところ,11%の写真につい ては震災時の複雑な荷重条件において,曲げ破壊,曲 げせん断破壊或いはせん断破壊だけではなく,ねじり が作用している可能性が見受けられた。よって,本研 究では,地震と高架橋構造との相関により発生する「ね じり」が構造物に与える影響に着目し,複合断面力を 受けた RC 部材の耐荷機構やひび割れ性状、内部破壊性 状を実験及び、AE 解析を用いて把握する。

2. 曲げ・せん断にねじりが同時に作用する RC の終局耐 カとひび割れ性状

2.1 実験概要

供試体の概要を表-1 に示し,配筋図を図-1 に示す。 岡本・李らの既往の研究成果^{1) 2)}より実験における曲げ モーメントとねじりモーメントの比率(以下,T/M)は, 以下の根拠より T/M=0.42 とした。すなわち,曲げ・ せん断とねじりを同時に受ける場合で T/M \geq 0.6 では, 純ねじり下で発生する「らせん状のひび割れ」と同様 なひび割れが断面の全面に発生するが,この値以下の T/M では「らせん状のひび割れ」は発生しない。よっ て曲げ・せん断の影響とねじりの影響の両方が構造物 に現れる T/M=0.42 と固定し載荷試験を実施した。尚, 供試体名の作用断面力として,M は曲げ,Q はせん断, T はねじり, PT は純ねじりを指す。

表-1 4	曲	計	体	腴	要
1 1	1	D-1	rtv	IM.	×د

供試体名	上端鉄筋	後端鉄筋	腹鉄筋	<u>主鉄筋比</u> %	<u>腹鉄筋比</u> %	<u>コンクリート圧縮強度</u> N/mm2
MQ 13						54.2
PT13	D22	D22	D10	1.48	0.32	53.9
MQT13						54.4

図-2 曲げモーメント M-たわみ関係

2.2 終局耐力

実験より得られた曲げモーメント-たわみ関係を図 -2に示す。MQ13では終局耐力M=61.98(kN・m)で典型 的な曲げ引張破壊をおこした。それに比べ,MQT13に おいては終局耐力M=40.14(kN・m)となり,ねじりの 影響で耐力が約35%低下し,脆性的なせん断破壊に移 行した。これより,ねじりの作用は構造物の耐荷力に 大きく影響することが認められた。なお,PT13では終 局耐力T=16.63(kN・m)でせん断破壊を起こした。

2.3 ひび割れ性状

図-3 に全供試体の終局状態のひび割れ図を示す。 「曲げ・せん断」載荷に供した MQ13 は純曲げスパンに 生じたひび割れが進展し,軸方向鉄筋降伏後に終局に 至った。MQT13 すなわち複合断面力を受ける RC はり のひび割れ性状は,せん断とねじりの主引張応力方向 が重なる面で,斜めひび割れが極端に発達し,一方, 主引張応力方向が直交し影響が相殺される面では,斜 めひび割れは生じず曲げひび割れのみが発生した。こ の結果から, MQT13 のようにねじりを含む複合断面力 を受ける RC はりの破壊は,局所的に破壊が起こること が認められた。

キーワード:地震, RC 部材, ねじり, 複合断面力, AE 法, 住所:滋賀県草津市野路1丁目10-9 エランビタール3 402 号室 , 電話番号: 090-6584-1411

3. 曲げ・せん断にねじりが同時に作用する RC の AE 解析による内部破壊性状の把握

3.1 実験概要および AE の発生挙動

図 - 4に AE センサーの設置位置の図を示す。全供試体において、ひび割れ発生時に放出される弾性波を計測する AE センサーを測定箇所を取り囲むように、両側面に 4 箇所、上面に 2 箇所設置し、内部の破壊性状及び進展状況を確認する。

図 - 5 に各供試体の作用荷重と終局耐力の割合と AE ヒット割合を示す。PT13 では荷重割合が 70%を超えて から急激に AE のヒット数が増加した。MQT13 では荷 重割合が 20%を超えるまで AE のヒット数は MQ13 と 同じ増加傾向だったが,荷重割合が 20%を超えてから ねじりの影響を受け, MQ13 より AE ヒット数が 10%近 く増加しながら伸びていく事が分かる。

3.2 AEによるパラメータ解析

図-6にAEから検出されるパラメータの一例を示す。 この種々のパラメータの組み合わせ、解析をおこなう。

図-6に示すパラメータのエネルギーを用い、各供試体の耐荷性状との比較を行った。ここでエネルギーとは、 AE から検出されたエネルギーであり、その現象の大小を表す。図 -7に各供試体の経過時間毎の曲げモ ーメントとエネルギーの推移を示す。

図-7 曲げモーメントと AE のエネルギーの推移

以上より, MQ13の「曲げ・せん断」による破壊は初期 曲げひび割れが発生した後に内部ひび割れが増加し始 め,主鉄筋が降伏以後を契機に終局間近で高いエネル ギーのひび割れが発生することがわかった。PT13の「純 ねじり」による破壊は,まず表面に多数の斜めひび割れ が発生し,徐々に内部ひび割れ数も増大してきたこと から,断面外周上付近から内部にかけて破壊が進行し ていくという特徴を有していると考える。MQT13の「複 合断面力」による破壊は,「曲げ・せん断」破壊に似てい るが,「ねじり」の影響より,初期と終局段階における エネルギーは大きい。これより,腹鉄筋降伏以後の作 用曲げモーメントに対してのエネルギーも大きいこと から,腹鉄筋降伏以後よりねじりの影響が顕著になる ことが分かった。

4. まとめ

本研究の範囲内で、得られた結果を以下に示す。

(1) ねじりを含む「複合断面力」の破壊性状は,せん 断とねじりの二つの主引張応力方向が重なる面で大き な斜めひび割れが進展し,その他の面ではひび割れが 少ない「局所的な破壊」であることが実験的に確認でき た。

(2) AE 解析より, RC 部材の「純ねじり」破壊では, 断面外周から内部に破壊が進行し、「複合断面力」によ る破壊では,初期斜めひび割れ及び腹鉄筋降伏以後に おいてねじりの影響を強く受け破壊が内部に進展する ことが分かった。

5. 参考文献

 岡本 享久,長滝 重義:曲げ・せん断とねじりを同時に受ける 鉄筋コンクリート部材の耐力と変形,土木学会論文集,第360号, V-3,1985.8

2) 岡本 享久, 李 承漢, 長滝 重義:鉄筋コンクリート部材のね じり耐荷機構に関する一考察, 土木学会論文集, 第 390 号, V-8, 1988.2