ディンプルを用いた新旧コンクリート間のせん断伝達(その1) 載荷実験

(株)大林組 正会員 〇田中 浩一 武田 篤史 姜 威 (公財)鉄道総合技術研究所 正会員 岡本 大 奥西 淳一 谷村 幸裕

1. はじめに

RC構造物の曲げ補強においてRCや鋼板で巻立てる場合は、 新設部と既設部の間で適切なせん断伝達が行われることが必 要である。そのためには、既設コンクリートに目粗しを行う ことが一般的である。しかし目粗しは、管理が困難であると ともに性能で規定することが困難であるという課題を有して いる。

そこで、性能を確実に管理でき、簡便に施工できるディン プルによる新旧コンクリートのせん断伝達工法を考案した。 本工法は、特殊なビットを用いたコアドリルにより旧コンク リートに凹面(ディンプル)を設け、新設コンクリートがデ ィンプルに充填されることによりせん断伝達を行うものであ

る。同時に行うせん断補強やじん性補強のために用いる鋼板や帯鉄 筋、中間貫通鋼材などにより拘束することで、新コンクリートの凸 面がディンプルから乗り上がるのを防止するとともに、その時に生 じるパッシブの拘束力を活かして新コンクリート凸部の一面せん断 強度増加に期待するものである。本工法の概要を図-1に示す。

本報においては、ディンプルを用いた新旧コンクリート接合部を 模擬した要素実験の結果を示す。

2. 実験方法

試験体形状および載荷方法を図-2に、試験体の一覧を表-1に示 す。試験体は新旧コンクリートの接合部にせん断力のみが発生する ように載荷した。コンクリートの圧縮強度は、旧コンクリートが

表-1 試験体一覧 拘束材 ディンプル 600 600 600 190 220 190 300 300 190_220_190 拘束剛性 新設 初期 No 名称 深さ 個数 コンク 拘束力 の計算値 170 170 0 0 0 0 0 形状 8 リート Nⁱⁿⁱ k_{cal} (配置) (mm)260 600 260 600 0 0 (kN/個) (kN/mm/個) • 000 20 170 C1 C30-4-M-P02-SH 30 4個 通常強度 25.0 76.9 ്റ 0 0 0 C45-4-M-P02-SH 76.9 鋼管<u>φ60.5, t3</u>.8 C2 45 4個 25.0 诵常強度 <u>ディンプル φ10</u>0 (mm) 2個配置(H) C3 C60-4-M-P02-SH 60 4個 25.0 769 4個配置 2個配置(V) 通常強度 ンプル配置 2個(V) ディ C30-V-M-P05-SH 84.9 C430 诵常确度 50.0 C5 C30-H-M-P05-SH 30 2個(H) 84.9 诵常強度 50.0 12.2.2.2.2.2.2 球底 C30-4-M-P02-SL C6 49.3 30 4個 通常強度 25.0 C7 C30-4-M-P01-SH 30 4個 通常強度 11.5 76.9 8 R57~130 R130 001 C8 C30-4-M-P06-SH 30 4個 通常強度 573 769 C9 C30-4-M-P17-SH 30 4個 通常強度 76.9 C10 C30-4-H-P02-SH 30 4個 高強度 25.0 76.9 h. h. $\overline{C}(2, 2)$ S1 S10-4-M-P02-SH 10 4個 通常強度 25.0 76.9 $\phi\,100$ $20 \sim 50$ 10 S2 S20-4-M-P02-SH 20 4個 诵常強度 25.0 76.9 $30 \sim 60$ $10 \sim 30$ _____(mm) 球面タイプ S30-4-M-P02-SH 球面 30 4個 通常強度 76.9 S3 25.0 平面(共通) 球底タイプ S30-4-M-P02-SI 30 4個 通常強度 25.0 49.3 S30-4-H-P02-SH 30 <u>ディンプル形状</u> 高強度 25.0 76.9 S5 4個

キーワード:曲げ補強、新旧コンクリート、せん断伝達、一面せん断、拘束力 連絡先:〒204-8558 東京都清瀬市下清戸4-640(株)大林組 技術研究所 TEL042-495-1111

図-1 ディンプルによるせん断伝達機構

250

18.0N/mm²、新コンクリートの通常強 度が 35.7N/mm²、高強度が 67.8N/mm² であった。600mm×600mmの試験体接 合面には、実構造物と同様にφ 100mm の特殊ビットを用いてディン プル削孔を行った。削孔終了後に接 合面全体に撥水剤を塗布して、膠着 力を除去した。実験時は、帯鉄筋や 中間貫通材の拘束効果を模擬する ため、鋼管中に配置した PC 鋼棒 (φ 19mm または o 26mm) 4 本で既設部と 新設部を拘束した。この拘束材の剛 性および実験開始時の軸力(初期拘 束力)も実験パラメーターとした。 拘束材の剛性は PC 鋼棒の材端に皿 バネを配置して調整した。

C2 C3 ·S1 -52 ·S3 C1 C4 C5 C6 ê 200 ·C7 C8 C9 C10 (X) 150 4 2 20 50 4 50 0 0 250 25 5 10 15 20 5 10 20 すべり変位 $\delta_V(mm)$ すべり変位 $\delta_V(mm)$ a) 球底タイプ b) 球面タイプ 図-3 せん断カーずれ変位関係 250 •C1 C2 C3 <u>______</u>S1 S2 -S3 و ب C6 C4 C5 S5 S4 ·C7 C8 -C9 N N 150 C10 せん彫力 100 50 0 4 0 0 2 目開き量 $\delta_H(mm)$ 目開き量 $\delta_H(mm)$ a) 球底タイプ b) 球面タイプ

3. 実験結果

図-3 にせん断力ーずれ変位関係

を、図-4 にせん断力-目開き量関係を、表-2 に結果の一覧を示す。せん断力は、ディンプル個数で除して1 個当たりにした。

球底タイプはせん断耐力までほぼ剛体として挙動し、 せん断耐力に達した後せん断力が 2/3 程度に落ちるが、 その後も徐々にせん断力が増加した。載荷後の観察によ り全て一面せん断破壊が発生していたが、高強度コンク リートを用いたものは旧コンクリート側で押抜きせん 断破壊も発生した。ディンプルの深さがせん断耐力に与 える影響はほとんどなかったが、拘束剛性、初期拘束力、 および新コンクリート強度がせん断耐力に与える影響 は大きかった。

球面タイプは、せん断耐力に達する変位が大きく、ま たせん断耐力時の目開き量も大きかった。目開き量の大 きさはパッシブで与えられる拘束力と等価であるため、 せん断耐力の上昇に寄与する。一方で、せん断耐力に達 する変位が大きいことは、構造物曲げ補強時のせん断伝

図-4 せん断カー目開き量関係

No.	せん断 耐力 V ^{peak} (kN)	せん断 耐力時 すべり変位 δ_V^{peak} (mm)	せん断 耐力時 目開き量 δ_{H}^{peak} (mm)	破壊 形態
C1	87.64	0.499	0.204	SS
C2	81.50	0.389	0.175	SS
C3	82.73	0.349	0.154	SS
C4	108.50	0.375	0.074	SS
C5	114.88	0.603	0.126	SS
C6	89.61	0.379	0.179	SS
C7	62.84	0.330	0.181	SS
C8	126.93	0.550	0.133	SS
C9	158.35	1.953	0.079	SS
C10	115.88	0.626	0.271	SS+PS
S1	79.78	24.845	2.556	BC
S2	111.46	12.631	2.335	SS+PS+BC
S3	106.79	2.728	0.946	SS
S4	87.64	2.866	1.058	SS
S5	187.08	14.628	3.220	PS+BC
※ のけませたけにや カに法したかったため				

※ SIは載荷中にビークに達しなかったため、 載荷した最大変位時とした

※破壊形態は、SS:一面せん断、PS:押抜きせん断 BC:支圧破壊

達においては構造物の剛性低下につながるため、注意が必要である。載荷後の観察より、一面せん断破壊して いるもの、支圧破壊が進展しながら乗り上げが進んだもの、旧コンクリート側で押抜きせん断破壊が生じたも のがあった。ディンプルの深さ、拘束剛性および新コンクリート強度はいずれもせん断耐力に大きく影響した。

4. まとめ

ディンプルによる新旧コンクリートのせん断伝達について、載荷実験を行った。その結果、球底タイプと球 面タイプでは挙動が大きく異なることが分かり、それぞれのタイプごとにせん断耐力に影響を与える因子を把 握した。