広島工業大学	正会員	菅	雄三
		H	

- 日本キャディック 正会員 小西 智久
 - 広島工業大学 学生会員 〇松村 隆一

1. はじめに

空間情報技術は、国土の利用・整備・保全・防災分野に関する社会基盤情報整備において必要不可欠な技術である.本研究では、GNSS(GPS)測量、CAD 測量と地上型 3D レーザースキャナーによる統合型 3 次元デジタルマッピングの精度検証について検討を行った.

2. 使用機器

本研究において使用した地上型 3D レーザースキャナーを表 1 に示す ¹⁾. Optech 社の ILRIS - 3D は Time of Flight 方式のレーザー・ビーム (1535nmの波長)の相互作用による反射率に基づく 3 次元的点群データの 取得を行った.

3.3D レーザースキャナー計測のための基準点測量

基準点測量では,GNSS(GPS)測量の静止型スタティック法とトラバー ス測量を試みた.テストサイトは,図1に示す広島工業大学21号館およ びその周辺を設定した.

3.1 GNSS 測量

GNSS 測量では、スタティック法を試みた.国土地理院の GEONET (GPS 連続観測システム)で得られた電子基準点観測データ(広島 2A、広 島佐伯、江田島)を用いた平均計画図を作成し、基線解析の結果から標準 偏差の最も小さい基準点座標値を採用した.

3.2 トラバース測量

GNSS/GPS 測量の基準点座標値を出発点として,図1に示す閉合トラ バース測量を行い,3D レーザースキャナーデータ標定用ターゲットの座 標値を取得した.トラバース測量の精度は,閉合比1/93,634 であった. また,基準点の標高は,直接水準測量(環閉合差が3.00mm)により取得し た.

3.3 電子平板測量

本研究では、トラバース測量により取得した基準点座標値に基づき、対象となる地物を 3 次元電子平板測量によりデジタルマッピン グを行った(図 2)²⁾.

ここでは、TS を用いた基準点間の標定残差(天頂角誤差,水平距離 誤差)と地物(2点)を3方向から視準した示誤三角誤差の精度評価 を行った.水平距離誤差は0.0~5.0mm,天頂角誤差は1.0~65.0秒で あった.空間的示誤三角形の内接円の直径は0.9mm であった.3次 元電子平板測量データでは、点群と線群に関する幾何学的図形情報 が取得されており、特定の点間の3次元ベクトルデータによりCAD 図面として作成されている.

表 1 ILRIS - 3D 諸元

モデル	ILRIS - 3D				
測守回 理	タイムオブ				
例足尿垤	フライト方式				
測定距離					
反射率 80%	1200m 1700m				
反射率 10%	400m 650m				
最短測定距離	3m				
測点点数	2500~3500 点/秒				
距離精度(単発)	7mm@100m				
距離精度(平均化)	n/a				
角度精度	8mm@100m(80µrad)				
計測範囲	$40 \times 40^{\circ}$				

図1 基準点配置図

図2 3次元 CAD によるデジタルマッピン

3. 4 地上型 3D レーザースキャナーによるデジタルマッピング

地上型 3D レーザースキャナーでは,地物の点群データ(3 次元座標値) およびレーザービームの反射率強度を取得している.また,スキャナー 側で計測の間隔を設定し,点群の密度と計測時間を設定することができ る.計測手順としては,標定用基準点3点に40cm四方のターゲット板 を設置し,3D レーザースキャナーにより50m 先で1mmの間隔で計測 を行った.解析には3次元点群データの解析ソフトである3DReshaper を使用し,ターゲット板の中心は,点群の中心を求める機能により決定 した.3点のターゲット板の標定誤差は,X方向-1.6~+5.8mm,Y方向 -1.3~+5.8mm,Z方向0.0~+0.1mmであった.次に,計測時間を考 慮し,本学21号館を西側から50m 先で20mmの間隔で計測を行った.

図3 統合型3次元デジタルマッピン

計測した点群データを上記のターゲット板の標定に基づき,平面直角座標系へ座標変換を行った.図3は,電 子平板測量データと3Dレーザースキャナーによる点群データを統合化したものである.

4. 地上型 3D レーザースキャナーによる 3 次元計測の精度検証

電子平板測量と3次元点群データにより取得した点座標 の比較検証を行った.本研究では、一方向から取得した点 群データから精度検証のための計測点を本学21号館西側の 壁面から抽出した.3DReshaperにより、点群の削除/分割機 能を用いて選択範囲の外側を削除し画像生成を行った.続 いて、この点群から面が垂直という条件を指定し、最小二 乗法により壁面のベスト形状の平面を図4のように作成し た.この平面と点群データの反射強度(相対的)を参考に 壁面のコーナーの点を5点抽出した.反射率強度について は、建物壁面部(赤色)が最も強く、次いで基礎部(水色) そして道路部(青色)の順であった.これに基づき、画像 上で各点を目測して、表2のように精度比較を行った.

空間的直線距離(差異)が点1では23.3mm,点2では 15.6mm,点3では28.3mm,点4では22.3mm,点5では 28.2mmであった.DX,DY,DZは空間的直線距離を成 分表示したものである.

5.まとめ

本研究では、基準点座標値に基づいて3次元ベクトル 図面の作成を試みた. さらに、地上型3D レーザースキ

ャナー画像の統合化により統合型3次元デジタルマップを作成することができた. 今後の研究課題として, 地 上型3Dレーザースキャナーの観測モードによるレーザー特性に関する精度検証が必要になる. そして, 地物 の3次元的形状認識及び対象物の前後位置関係, 方向, 材質, 色などの識別を確認することが課題となってい る.

参考文献

1) Optech Inc. : ILRIS-3D Operation Manual, 2012.

2) 広島工業大学菅雄三研究室:測量情報処理実習テキスト,2012.

図4 ベスト形状の平面と壁面の点群データ

表2 電子平板測量と点群データの差異

	電子平板測量と点群データの差異				
点名	空間的 直線距離	DX	DY	DZ	
点1	23.3mm	1.7mm	22.4mm	6.1mm	
点 2	15.6mm	10.2mm	- 6.0mm	10.1mm	
点 3	28.3mm	- 4.5mm	10.7mm	- 25.7mm	
点 4	22.3mm	- 16.4mm	8.8mm	- 12.3mm	
点 5	28.2mm	- 10.0mm	26.3mm	2.0mm	