高拘束圧下での凝灰岩のせん断-保持-せん断型三軸試験

京都大学大学院工学研究科	学生会員 〇	大野	正登
京都大学工学研究科	正会員	矢野	隆夫
愛媛大学理工学研究科	正会員	安原	英明
京都大学工学研究科	正会員	岸田	潔

1. はじめに

ある一定の温度・拘束条件下では岩石の構造が変 化し、それに伴い力学特性や水理学特性が変化する ことが考えられる.本研究では、緑色凝灰岩の一種 である大谷石を用い、せん断と停止を繰り返すせん 断-保持-せん断型(SHS型)の三軸せん断試験を実施 した.先行する研究¹⁾は、せん断過程でひずみ軟化 が確認できる比較的低拘束圧で実施されているが、 ここでは同種の岩石供試体を用い、比較的高拘束圧 で実施した.これらの結果を基に、拘束圧、温度条 件が力学特性や強度回復現象に及ぼす影響を評価し た.

2. せん断-保持-せん断型三軸試験

供試体は、直径 5 cm、高さ 10 cm の標準供試体を 用いた. **表** 1 に、供試体の成分分析の結果を記す. これより、モンモリロナイトや沸石など、熱による 変質が想定される物質が確認できる¹⁾. 三軸せん断 試験は、排水条件で行った. 残留状態になるまでせ ん断載荷した後、載荷を一時停止し、所定の保持時 間後に再び載荷する SHS 型の三軸試験を行った. 三 軸セル内の温度条件は 20 ℃と 60 ℃、拘束圧条件は 5 MPa と 7 MPa の合計 4 ケースの実験を行った.

3. 結果と考察

(1) 実験結果

図1に20℃での応力-ひずみ関係を先行実験の結 果とともに示す¹⁾. 拘束圧が5 MPaと7 MPaでは, ピークをとらずに残留状態になる典型的な正規圧密 領域での挙動を示した.これは,加温状態でも同様 であった. 荒木ら¹⁾の結果では,保持後再せん断す ることで保持開始時の応力状態を超過したせん断応 力が発現していたが,拘束圧が5 MPaと7 MPaでは, 応力が徐々に増加する領域での SHS 過程となり,保 持時に応力は減少するものの,再せん断時は元の応

表1 実験で用いた凝灰岩の成分分析(単位:%)¹⁾

San	nple No.	1-1	1-2	Average		
Natural	Celadoite	38.0	40.0	39.0		
mineral	Montmorillonite	12.0	13.5	12.75		
produced	Zeolite	34.0	31.5	32.75		
by glassy	(Clinoptilolite)	(33.5)	(30.5)	(32.0)		
Crystal and lithic	Quartz	4.0	7.5	5.75		
	Plagioclase	8.0	6.0	7.0		
	Lithic	3.0	1.5	2.25		
	Void	1.0		0.5		

図1 常温条件(20 ℃)の軸ひずみ-応力関係

カひずみ関係になだらかに回復するようなこととなった.

(2) 強度回復の定義と保持時間と強度回復値の関係

荒木ら¹⁾の実験と本実験においての強度回復値に ついての定義を図2に示す.強度回復値を荒木ら¹⁾ は、再せん断後のピーク応力と再せん断開始時の応 力との差分で定義したのに対し、本実験では、直線 性から離脱する時点での応力と再せん断開始時の応 力との差分で定義する.図3に本実験より得られた 保持時間と強度回復値の関係を示す.図3より、両 者の関係は対数線形で表現できる.また、低拘束圧・ 常温時に直線の傾きが大きくなる傾向があることが 確認できる.

キーワード 強度回復,凝灰岩,せん断-保持-せん断,三軸せん断試験,加温 連絡先 〒615-8540 京都市西京区京都大学桂4 京都大学工学研究科都市社会工学専攻 TEL075-383-3267

-625-

図3 保持時間と強度回復量の関係

(3) 供試体の破壊形状

拘束圧 5 MPa, 温度 20 ℃と拘束圧 0.3 MPa, 20 ℃ での実験後の供試体を写真1に示す.写真1(a)では, 樽型の破壊形状を示しており,写真1(b)では,明瞭 なせん断面が入る破壊形状を示している.高拘束圧 の実験では,温度条件に関係なく樽型の破壊形状を 示しており,保持時の応力を超過するような応力が 再せん断時に発現しなかった.これに対して,低拘 東圧条件では写真1(b)のような破壊形状を示し,明 瞭な強度回復現象を確認することができた.

(a)
(b)
(a) 本実験の実験後の供試体の形状
(b) 先行実験の実験後の供試体の形状¹⁾
写真1 実験後の供試体の形状

強度回復現象は、粒子がつぶれ接触部で圧力融解 現象が生じることで発生すると考えられている.ま た、圧力融解が生じるまでに、クリープ的な変形が 生じることが考えられる. Oka, et al.²⁾は、圧縮帯にお いては、粒子がつぶれるのと同様、構造が変形して いくだけであると説明しており、Nakatani³⁾は、保持 中も変形は継続する(クリープ現象)ことを示して いる.本研究において高拘束圧では樽型の破壊を示 しており、破壊面での粒子の変形よりも保持中も変 形が継続するため、クリープ変形が卓越し、圧力融 解現象が発現しにくく、結果として明瞭な強度回復 現象が発現しなかったと推察する.

4. まとめ

本研究では、凝灰岩に対して種々の条件のもとに 排水三軸せん断試験を行い、残留状態においてせん 断-保持-せん断過程を実施した.高拘束圧では、応力 が徐々に増加しており、保持の応力低下は確認でき たが、再せん断時に保持開始時を超過する応力は発 現せず、もとの応力ひずみ関係に漸近するような挙 動が見られた.

参考文献

- 1) 荒木壯則, 矢野隆夫, 安原英明, 岸田潔: 凝灰岩におけ る加温条件下での三軸応力保持中の力学的特性に関する 研究,第41回岩盤力学に関するシンポジウム講演集,(公) 土木学会, pp. 220-225, 2012
- Oka, F., Kimoto, S., Higo, Y., Ohta, H., Sanagawa, T., Kodaka, T.: An elasto-viscoplastic model for diatomaceous mudstone and numerical simulation of compaction bands, *Int. J. Numer. Mnal. Meth. Geomech.*;35:244-263, 2011
- Nakatani, M.: Conceptual and physical clarification of rate and state friction: Frictional sliding as a thermally activated rheology, *JGR*, 106(B7), 13,347-13,380, 2001.