地盤・地下構造物のE-ディフェンス震動実験(その2) 土槽の振動特性

(独) 防災科学技	支術研究所	正会員 〇	田端え	景太郎
神戸学院大学	フェロー		中山	学
東京電機大学	フェロー		安田	進
(独) 防災科学技	支術研究所	正会員	梶原	浩一

1. はじめに

平成24年2月末, E - ディフェンスを用いた大型地 盤・地下構造物の震動実験を実施した¹⁾. 試験体地盤の 特性および実験結果例については,文献^{2),3)}に譲る. 本文では,加速度計で計測された加速度応答に注目し て,土槽の振動特性について述べる.

2. せん断土槽,加速度計設置位置と加振波

本実験で使用した円筒形せん断土槽の外観と,ベア リング部の構造を図1に示す.土槽は高さ6.5m,内径 8mで,40段のせん断リング,円周方向とその直交方 向に可動のリニアスライダから構成されている.リニ アスライダは、リングが動く時の摩擦を軽減している.

試験体には、加速度計をはじめとして約 900 チャン ネルの計測機器を設置した.図2に、土槽の外側およ び地表面に設置した加速度計の一部を示す.また、実 験で使用した加振波を表1に示す.

3. せん断土槽の振動特性

ここでは、ステップサイン波 50Gal, Y 軸方向加振時の実験結果を例に、土槽の振動特性について述べる.

1) 鉛直軸周りの回転動

土槽の外側に設置した加速度計から算出した,せん 断リングの回転加速度を図 3 に示す(それぞれ, CA1 と CA3 の Y 軸方向加速度, CA2 と CA4 の X 軸方向か ら算出). これらの図より,20 秒付近および26 秒以降 において,土槽に顕著な回転動が生じていることが見 て取れる.

図 3(c)に,目標加振波と観測加振波を示す. 震動台と 試験体の相互作用により,11 秒以降において,目標波 と観測波に大きな差異が見られるが,土槽の回転動が 顕著な時刻において,震動台の加速度が増幅する様子 は見られない.

せん断リングの回転加速度および地表面の水平加速 度から算出した加速度応答スペクトルを図 4 に示す.

(独) 防災利	科学技術研究所	正会員	河又	洋介
東京大学	フェロー		東畑	郁生
東京大学	フェロー		前川	宏一

リングの回転は, 6.8Hz および 13.5Hz でピークが生じ ているが, 土槽中央部 (GA1) および土槽近傍 (GA2) の加速度応答スペクトルのピークは, それぞれ約 4.5Hz, 5Hz および 13.5Hz である. したがって, 1) 土槽中央付 近 (GA1) における土槽の回転動の影響は小さい, 2) 土 槽と土槽近傍 (GA2) の応答には相関があり, 土槽と地

円形断面を有する B<___CA1 矩形断面を有する 水平構造物 水平構造物 CA3 B _ECA1 GA2 GA1 CA2 CA4 X(+ GA2 Y(+) ← C CA3 R< 。 鉛直構造物 15.4 B-B 断面 Z(+)GA1 Ry(+) CA2 CA4 ►X(+) CA:加速度計@土槽 GA:加速度計@地態 Z(+)Y(+) < A-A 断面

表1:加振波一覧

加振波	入力加速度レベル	加振方向
ステップサイン波 ^{*1}	最大10~50 Gal	0~135度 ^{**2}
JR鷹取波 ⁴⁾	観測波の50,80%	₩3

※1:振動数のステップ0.25~0.5Hzとし、1~20Hzの振動を各 2波ずつ入力(図3の入力波形を参照)

※2:X軸方向を0度,Y軸方向を90度と定義

※3:EW成分をX軸方向,NS成分をY軸方向に入力

キーワード E-ディフェンス,模型実験,地下構造物,振動実験,動的相互作用 連絡先 〒673-0515 兵庫県三木市志染町三津田西亀屋 1501-21 田端憲太郎 TEL: 0794-85-8964

-293

図 3: せん断リング回転加速度と加振波(ステップサイン波 50Gal, Y 軸方向加振)

図4:応答スペクトルの比較(せん断土槽の回転および 地盤地表面の水平応答)

盤の相互作用による.常時微動計測の結果,地盤部の 一次固有振動数は 5.5Hz であり,土槽部の固有振動数 (7.0Hz)は,地盤部よりも高くなっている.

2) ロッキング動

土槽の鉛直動から算出したロッキング加速度を図 5 に示す.これらの図より、30 秒付近において、土槽が 加振方向に倒れ込むようにロッキング動を示している ことがわかる.

せん断リングのロッキング加速度および地表面の水 平加速度から算出した加速度応答スペクトルを図 6 に 示す. 土槽の鉛直軸周りの回転動と同様, ロッキング 動についても,約13.5Hz に応答スペクトルのピークが 見られる.しかしながら,土槽中央付近の地盤応答は, この振動数帯で増幅していないことから,地盤が大き く振動することによって,土槽のロッキングが増幅し たとは考えにくい.鉛直軸周りの回転動と合わせて, 複合的にデータ分析を行う必要があると思われる.ま た,今回は加速度計で直接計測された加速度応答を用 いて論じたが,変位応答に基づいた検討も加える予定 である.

4. まとめ

実験・解析の両方にとって、土槽の境界条件は必要 不可欠な情報である.しかしながら、内部に投入する 地盤材料の振動特性とも密接な関係があり、かつ相互 に影響を及ぼしていると考えられ、その挙動は複雑で ある.より詳細なデータ分析を進めると共に、今後の 実験で、地盤投入済みの土槽の常時微動計測を行う等、 土槽の特性を把握していきたい.

図 6:応答スペクトルの比較(せん断土槽のロッキング および地盤地表面の水平応答)

参考文献

-586-

- 河又洋介,中山学,梶原浩一 (2012): E-ディ フェンスを用いた地盤・地下構造物の震動実験, 第67回年次学術講演会議,土木学会
- 2) 梶原他 (2013):地盤・地下構造物のE-ディフ エンス震動実験(その1)試験体地盤について, 第68回年次学術講演会議,土木学会(掲載予定)
- 河又他 (2013):地盤・地下構造物のE-ディフ エンス震動実験(その3)実験結果例,第68回 年次学術講演会議,土木学会(掲載予定)
- 中村他 (1996): 1995 年兵庫県南部地震の地震動
 記録波形と分析 (II), JR 地震情報 No. 23d, (財)
 鉄道総合技術研究所

-293