# 飽和および不飽和砂質土の非排気・非排水条件下における三軸圧縮試験

(現西日本旅客鉄道) 京都

| 1. | 研究の背景および目的 |
|----|------------|
|    |            |

不飽和地盤の変形特性のうち,特に非排気・非排水条 件下での挙動については未解明の部分が多い.降雨時 に表層が飽和する場合や,地盤内部でガスが発生する 場合には,非排気 - 非排水条件になることが考えられ る.本研究では,河川堤防で採取された砂質土を用い, 非排気・非排水条件で種々のサクション下で三軸圧縮 試験を行った.

## 2. 試験概要

#### 2.1 試験試料

本研究では、木津川 11.8km 地点の吉之見樋門撤去 工事現場の右岸川表側の堤体内で採取された砂質試料 を、2mm 以下にふるったものを使用した.用いた試料 の物理特性を表 -1に、粒径加積曲線を図 -1に示す.





#### 2.2 供試体作製方法

供試体は,最適含水比 10.5%に調整した所定量の木 津川堤防砂を用いて,高さ 10cm,直径 5cm,締固め度 85%を目標に締固め法で作製した.飽和土の試験では, 上記の方法で作製した供試体を自然乾燥させ使用した.

### 2.3 試験装置

試験装置の概略図を図 - 2 に示す.供試体上部のキ ャップには間隙空気圧計と空気圧作動式バルブが設置 されており,非排気状態を作り出すことができる.ペ デスタルは不飽和試験の場合はセラミックディスク付 きのものを用いている.

| 跌道) | 京都大学大学院 | 正会員    | ○狩野 修志 |
|-----|---------|--------|--------|
|     | 京都大学大学院 | フェロー会員 | 岡 二三生  |
|     | 京都大学大学院 | 正会員    | 木元 小百合 |
|     | 京都大学大学院 | 正会員    | 肥後 陽介  |
|     | 京都大学大学院 | 学生会員   | 森本 恭弘  |

### 2.4 供試体の体積測定方法

不飽和土の試験では,非接触ギャップセンサー(非 接触変位計)と軸変位計により体積ひずみを求めてい る.また,セル外部から撮影した供試体の写真を画像 解析ソフトで処理することによっても体積ひずみを求 め,結果を比較した.写真を用いる方法では,図-3 に示すように画像解析ソフトを用いて供試体とセル水 の境界を得た後,体積積分して求めた.



図-3 写真から体積を計算する手順

#### 2.5 試験手順

飽和土の試験では,設置・通水,セル圧・背圧上昇, 圧密,せん断の順に実施し,不飽和土の試験では,設 置,セル圧・間隙圧上昇,吸排水圧密,せん断の順に 実施した.

# 3. 飽和土および不飽和土の三軸圧縮試験

# 3.1 試験条件,応力変数

試験条件は表 - 3 に示すとおり,飽和土については 有効拘束圧 100,200 (kPa)の 2 ケース,不飽和土につい ては初期サクション 0,10,80,100 (kPa)の 4 ケースの結 果を示す.応力変数には、以下で定義される平均骨格 応力 $\sigma'_{m}$ <sup>1)</sup>を用いている.

$$\sigma'_m = \sigma_m - P^F \tag{1}$$

$$P^{F} = (1 - S_r)u_a + S_r u_w \tag{2}$$

ここで、 $\sigma_m$ :平均全応力、 $P^F$ :平均間隙圧、 $S_r$ : 飽和度、 $u_a$ :間隙空気圧、 $u_w$ :間隙水圧である.ひ ずみ速度は全てのケースで 0.1%/min とした.

表-3 不飽和土の試験条件及びせん断前諸量

| ケース名      | セル<br>圧<br>(kPa) | 間隙空<br>気圧<br>(kPa) | 間隙<br>水圧<br>(kPa) | サク<br>ション<br>(kPa) | 有効拘<br>東圧<br>(kPa) | 間隙<br>比, e | 含水<br>比, w<br>(%) | 飽和<br>度 <i>,</i><br>S <sub>r</sub> (%) |
|-----------|------------------|--------------------|-------------------|--------------------|--------------------|------------|-------------------|----------------------------------------|
| ua-uw=0   | 300              | 200                | 200               | 0                  |                    | 0.571      | 17.16             | 79.19                                  |
| ua-uw=10  | 300              | 200                | 190               | 10                 |                    | 0.607      | 10.69             | 46.43                                  |
| ua-uw=80  | 300              | 200                | 120               | 80                 |                    | 0.611      | 9.98              | 43.09                                  |
| ua-uw=200 | 300              | 200                | 0                 | 200                |                    | 0.610      | 8.96              | 38.74                                  |
| CU100     | 300              |                    | 200               |                    | 100                | 0.592      | 22.4              |                                        |
| CU200     | 400              |                    | 200               |                    | 200                | 0.565      | 21.4              |                                        |

#### 3.2 試験結果

図 - 4(a)~(f)に試験結果を示す. 不飽和土のケース 名末尾の GS (Gap sensor) および IP (Image Processing) は, 非接触変位計から求めた体積, 写真 から求めた体積で整理したものをそれぞれ示している.

図 - 4(a)の応力・ひずみ関係より, 飽和土のケースで は大きくひずみ軟化挙動を示しており, 有効拘束圧が 大きいほど軸差応力は大きくなっている. 不飽和土の ケースでは初期サクションが大きいほど軸差応力が大 きくなっていることが確認できる.

図 - 4(b)に示す骨格応力径路では,初期サクション が大きいケースを除いて,せん断終了時の応力比は飽 和土の非排水三軸圧縮試験の限界状態の応力比 M = 1.49にほぼ一致している.初期サクションが 200(kPa) のケースでは限界状態の応力比はやや大きくなる傾向 がみられた.

図 - 4(c)に示す軸ひずみ - 体積ひずみ関係より,写 真から求めた体積ひずみは非接触変位計から求めた体 積ひずみよりも小さくなっている. 図 - 4(d)~(f)に示す軸ひずみ - サクション関係,軸 ひずみ - 間隙空気圧関係および軸ひずみ - 間隙水圧関 係より,初期サクションが小さいケースでは間隙空気 圧と間隙水圧の増加量がほぼ変わらないため,せん断 中のサクションはあまり変化しなかった.一方,初期 サクションが大きいケースでは,間隙水圧の増加量が 大きいため,サクションは大きく減少した.また,初 期サクションが大きいケースでは他のケースに比べて 間隙水圧が緩やかに増加した.



(c)軸ひずみ - 体積ひずみ関係(d)軸ひずみ - サクション関係



(e)軸ひずみ - 間隙空気圧関係 (f)軸ひずみ - 間隙水圧関係 図 - 4 飽和土および不飽和土の三軸圧縮試験結果

### 4. 結論

不飽和土の三軸試験では初期サクションの増加によ り軸差応力が大きくなった.また,間隙水圧および間 隙空気圧の挙動は初期サクションにより異なった.応 力径路について骨格応力を用いて整理した結果,せん 断終了時の応力比は,初期サクションが小さいケース では,飽和土の非排水三軸圧縮試験の限界状態の応力 比にほぼ一致し,初期サクションが大きいケースでは 限界応力比はやや大きくなった.

## 参考文献

 Jommi, C., Remarks on the constitutive modelling of unsaturated soils, Experimental Evidence and Theoretical Approaches in Unsaturated Soils, Tarantio, A. and Mancuso, C. eds., Balkema, pp. 139-153, 2000.