# 縦ずれ逆断層による高盛土の力学的挙動に 関する基礎的な遠心載荷模型実験

| 学生会員 | ○野添重晃                     |
|------|---------------------------|
| 正会員  | 金子賢治                      |
| 正会員  | 橋詰豊                       |
| 正会員  | 江原昌彦                      |
|      | 学生会員<br>正会員<br>正会員<br>正会員 |

# 1. はじめに

地震による構造物被害の検討は,主に地震動に対し て行われているが,断層のずれによる地盤の大変形に よっても,地表付近の構造物が被害を受けるとがある. 縦ずれ断層においては,地表面が大きく隆起するなど により被害が発生する.例えば,1999年に発生した中 国集集地震などにおいて,断層のずれによる被害が多 く発生した<sup>1),2)</sup>.一方,地質学分野等の研究者らによっ て断層の研究が発展し,断層の位置や形態,活動する 確率などの多くの情報が得られるようになってきた. しかしながら,盛土などの土構造物の変形挙動につい ては,拘束圧に依存することや数mオーダーの強制変 位による変形の局所化領域あるいは不連続面が発達・ 分岐すること等複雑な挙動を示すため,未だに明確に 理解されていない.

そこで本研究では,縦ずれ逆断層の上部にあるロッ クフィルダム等の高盛土を対象に,断層が発生した場 合の変形挙動を予測するための基礎的な実験を行う. 特に,縦ずれ断層発生時の地表面の変位量やせん断帯, 不連続面が発展し地表面へ到達する位置などについて 検討する.

## 2. 実験概要

本研究では、拘束圧が高い状態での実験を行うため に、遠心載荷装置を用いて水平地盤に対して縦ずれ逆 断層が発生した場合を想定した基礎的な模型実験を行っ た.実験装置の模式図を図-1に示す.層厚 90mmの 水平地盤を作成し、100Gの遠心加速度を付与するこ とで、9m 程度の層厚を想定した.幅187mmのうち右 側から 50mmの部分に 75°の角度で強制変位を与え ることで縦ずれ逆断層を再現する.

土層前面は透明なアクリル板で作成し,地盤中に90 個のマーカーを設置した.実験中は動画撮影し,終了 後に各マーカーの変位を画像解析により計測した.ま た,土圧計は図-1のように3つ設置した.



**図**-1 断層模型の概略図 (mm 表示)

表-1 地盤材料の基本的性質

| 地盤材料                 | ケイ砂5号 | ガラスビーズ |
|----------------------|-------|--------|
| $ ho_{s}(g/cm^{3})$  | 2.680 | 2.489  |
| $D_{50}$             | 0.55  | 0.44   |
| $U_c$                | 1.31  | 1.30   |
| $U_c'$               | 1.31  | 0.947  |
| $ ho_{dmin}(g/cm^3)$ | 1.304 | 1.450  |
| $ ho_{dmax}(g/cm^3)$ | 1.601 | 1.579  |
| $c_d (kN/m^2)$       | 5     | 0      |
| $\phi_d(\circ)$      | 38.9  | 31.9   |



本実験で使用した地盤材料はケイ砂5号とガラスビー ズの2種類であり、その性質を表-1に、粒径加積曲線 を図-2に示す。

ガラスビーズは硅砂に比べて内部摩擦角が小さいた め,縦ずれ逆断層による地盤中のせん断帯形成に対す

# Key Words: 縦ずれ逆断層,遠心載荷模型実験,内部摩擦角 (〒 031-8501 青森県八戸市妙字大開 88-1 八戸工業大学大学院工学研究科土木工学専攻地盤工学研究室)



図-4 断層発生に伴う地表面の変位

る内部摩擦角の影響を検討するために使用した. 土層 は相対密度 50%になるように, 10mm ずつ密度を調整 しながら作成した.

## 3. 実験結果

実験中に撮影した動画像から,画像解析によりマー カーの位置座標を取得した。例として,ガラスビーズ の場合の断層発生前と発生後の位置座標を 図-3 に示 す.画像解析により取得した地表面のマーカーの初期 状態と断層発生後(鉛直変位15mm)の位置座標を 図 -4 に示す.逆断層により上盤側の地表面が初期状態に 比べ,約0.9mm 程度鉛直上向きに変位している.ま た,断層変位の地表面への到達位置については,ガラ スビーズのケースの方が75°の角度の延長線上よりも 左側にずれている.これは,内部摩擦角の影響がある のではないかと考えられる.

次に、取得したマーカーを節点と見立て有限要素を 構成し、水平地盤内のひずみを算出した.ただし、断 層変位に伴い変形が局所化し要素が不適切な形状とな る可能性があるため、ステップ毎に要素を再構成する こととし画像ステップ間でのひずみ増分を算出するこ ととした.ひずみ増分を節点に振り分け、節点におい てひずみを蓄積することで求めた.図-5にガラスビー ズの場合の最大せん断ひずみおよび体積ひずみ分布を 示す.最大せん断ひずみは、75°の延長線上で断層が 進展するに従ってせん断帯が発達していくが、幅はそ れほど変わず、地表面に近づく程延長線から左側に外



図-5 ひずみ分布 (ガラスビーズ)

れていくことがわかる. せん断帯の進展方向は拘束圧 に依存し,拘束圧の低い領域では横方向へずれていく ものと考えられる. また,上盤側に注目すると若干で はあるが小さいひずみが分岐していく様子も伺える. 体積ひずみについては,せん断帯周辺に一部体積膨張 をしている領域が確認できる. ロックフィルダムなど の止水を目的とした盛土を対象としている場合には, 盛土内部の間隙比が大きくなることで透水係数が上昇 し不具合が発生する可能性がある. したがって,断層 変位に伴う盛土内部の体積膨張については,注意が必 要と考えられる. 体積ひずみが膨張する領域の付近か ら,せん断帯が左方向に徐々に折れ曲がるような傾向 にある.

### 4. おわりに

本研究では、逆断層発生に伴う高盛土の変形を想定 し、遠心載荷模型実験を行った.せん断体の進展方向 や体積変化、地表面への到達位置などについていくつ かの知見が得られた地盤内の変位等について、せん断 帯の分岐や不連続面の観察など、より精度の高い計測 手法の検討等が課題である.また、規模の大きい実験 データは過去にも少なく、数mオーダーの層厚を想定 した実験データはほとんどない.したがって、本遠心 載荷装置を用いて種々の要因を変化させた実験を行っ て、実験データの蓄積を図ることも今後の重要な課題 と言える.

#### 参考文献

- 佐藤 比呂志,池田 安隆,李 民,張 徽正:台湾中部で発 生した 1999 年 9 月 21 日集集地震に伴う地表地震断層, 活断層研究, Vol. 2000 No. 19, pp.v-vi, 2000.
- Earthquake Engineering Committee: The 1999 Ji-Ji Earthquake, Tiawan, Japan Society of Civil Engineering, 1999.