切ばり式掘削土留め工の地震時設計手法の検討

複合技術研究所	正会員	○矢崎	澄雄	正会員	伊藤企陽司	
鉄道総合技術研究所	正会員	小島	謙一	正会員	栗山	亮介
日建設計シビル	正会員	西山	誠治			

表 1

地盤の応答変位量算定地震時主働土圧の算定

手法①

応答変位法

地盤変位を考慮した

土留め壁応答値の算定

仮設時 (Step1) と地震

の影響 (Step3) の

1

2

3

地震時応答値の算定方法

手法③

動的 FEM 解析

初期応力解析

動的解析による変位・

断面力の算定

仮設時 (Step1) と地震

の影響 (Step3) の

変位・断面力の加算

手法(2)

地震時主働土圧

仮設時の設計(釣合い根入れ計算・弾塑性計算・支保工計算)

(土留め構造・部材の決定,仮設時変位・断面力の算定)

地震時主働土圧を作用

させた弾塑性計算

変位・断面力算定)

1. はじめに

供用期間が長期に渡る場合や重要度の高い 掘削土留め工では、地震作用時の安全性につ Step いても考慮することが望ましい.しかし、地 震時の検討手法は十分に確立されていない. そこで、筆者らは開削トンネルや抗土圧構造 物の応答値の算定手法^{1),2)}を適用して、各種 掘削土留め工の地震時応答値の算定を行い, 掘削土留め工の地震時の設計手法について検 討を行った.

変位・断面力の加算 自立式土留め工については、応答変位法に よる検討と地震時主働土圧を作用させた検討を行い、掘 削解放面の影響を考慮した応答変位法と, 地震時主働土 圧による応答値がほぼ一致することがわかった³⁾.本論 文では、切ばり式土留め工に対する検討結果を報告する.

2. 地震時応答値の算定方法

切ばり式土留め工の地震時応答値として, 土留め壁の 変位・曲げモーメントに着目することして,表1に示す 3 手法での応答値の比較を行うこととした.応答変位法 は開削トンネルなどの地中構造物の応答値算定手法で あり、切ばり式土留め工への適用性は高いと考えられる.

地震時主働土圧による応答が卓越することも想定されるため, 地震時 主動土圧を作用させた弾塑性法による応答値も算定することとした. また、動的 FEM 解析による応答値も算定し、それぞれの結果を比較 することにより設計手法を検討することとした.

3. 試計算条件および解析モデル

図1に仮設時の設計²⁾で決定した土留め工の構造断面を示す.本試 計算では、N=30、 φ=38°の砂質土均一地盤に対して、最終掘削深さ 13.0m に対する切ばり式土留め工を計画した. 仮設時設計の結果, 土

(b)曲げモーメント図 図2 仮設時土留め壁変形・断面力図

留め壁は鋼矢板Ⅲ型:L=16.5m, 切ばり4段:水平間隔3m(上部2段:H-300, 下部2段:H-350)となり、 弾塑性計算による鋼矢板の変形および曲げモーメント分布は図2のとおりとなった.

図3に手法①Step3の骨組みモデルを、図4に手法③のFEMモデルを示す.手法①は、節点・要素・地盤ば ねから成る骨組みモデルにて地盤変位の影響による応答値を静的に算定する.手法③は,地盤要素・粘性境界・ 自由地盤で構成し、土留め工部材は梁要素でモデル化した. 各モデルとも部材・地盤の各物性は仮設時設計で

キーワード:地震時,掘削土留め工,設計

連絡先:〒160-0004 新宿区四谷1-23-6 (株) 複合技術研究所 TEL:03-5368-4101/FAX:03-5368-4105

の諸元を基本として設定し、FEM モデルは自由地盤の側方の無限性を模擬するよう、奥行厚みおよび底面ダ ンパー物性を十分大きく設定した.考慮した地震力は,静的解析法では水平震度 kh=0.2 を,動的解析法では 基盤地震動波形¹⁾ (L1 地震動適合波: α_{max} =137 gal) とした.基盤面は掘削底面より深さ 10m の位置とした.

4. 応答値の算定結果

図5は手法①Step2による地盤変位分布(最大変位11.6mm)である. これによる Step3 での土留め壁変位は 地盤と同程度(図3:赤線)となっている.図6は動的 FEM 解析による土留め背面の地表面水平変位が最大 の時刻の土留め壁の変位分布である.左右の土留め壁の変位分布・最大値(15mm 程度)は同程度であり、応 答変位法の適用が可能であることを示している.これら地震の影響による変位を,掘削完了時の仮設時変位と 重ね合せた結果を図7に示す.同図から、応答変位法と動的 FEM 解析の変位はほぼ同程度となっている.ま

δ max=11, 6658mm

盤ば

土留め壁の応答変位

掘削底面地

2

8

能10

前面地盤ばね

δ max=11.6mm

75

切梁:H-300@3.0m

切梁:H-300@3.0m

切梁:H-350@3.0m

切梁:H-350@3.0m ピン結合

鋼矢板Ⅲ型

図3 手法①Step3 の骨組みモデル

(赤線:地盤変位の影響による土留め壁変位)

を位(mm) 20 0

10

鉛直固定

20

2

4

8

10勝

10

右側土

た、手法②の地震時主働土圧を作用させた弾塑性計算による変位は 仮設時変位より若干大きな結果となった.

図8は、手法①、②の地震による増分を足し合せた土留め壁の曲 げモーメント分布であり、図9は手法③による地震の影響による曲 げモーメントの増分分布である. 各手法とも仮設時より若干最大値 が増加する結果であり、図9のFEMの結果と増分の程度や分布がよ く整合していることがわかる.また、手法②による曲げモーメント の最大値での応力度は仮設時の許容応力度を満足する結果であるこ とを確認した.

5. まとめ

切ばり式土留め工の地震時応答値の算定手法として 3 つの方法に より比較を行った. 土留め壁の曲げモーメントは各手法とも同程度 となったが、変位については地震時主動土圧による手法での結果が 若干小さくなった. 今後はこの結果を基に, 地震時設計手法を確認 する予定である.

参考文献

1) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説 耐震設計, 平成 24 年 9 月

- 2) 鉄道総合技術研究所:鉄道構造物等設計標準・同解説 開削トンネル, 平成 13 年 3 月
- 3) 小島, 栗山, 矢崎, 伊藤: 自立式掘削土留め工の地震時設計手法の検討, 第48回地盤工学研究発表会, 2013.