海洋短波レーダー観測結果を用いた東京湾油流出事故の再現計算

東京都市大学大学院	学生会員	○森谷	拓実
東京都市大学	フェロー	村上	和男
株式会社奥村組		大貫	貴士

1. はじめに

海域での油流出事故において,流出油の早期回収に は,拡散範囲の予測が重要である.流出油の水平拡散・ 移流は,表層流(潮汐流・吹送流など)が支配的に作用し, 浮力や粘性といった油拡散(Spreading),流れの乱れによ る渦拡散(Diffusion)を考慮する.

海洋短波レーダー(High Frequency Radar, 以下, HFレ ーダー)は表層流を広範囲に常時観測できるリモートセン シング機器である. その観測結果は表層流の把握・予測 に利用できると考えられる.

本研究では、流出油回収の効率化を目的とし、流出油 の拡散範囲を計算する. HF レーダーによる表層流の観測 結果には調和分解を行い、潮流を推算する. 推算した潮 流と海上風の観測値を与えた油拡散粒子モデルにより、 流出油の拡散範囲を計算する. 対象事例として、1997年7 月2日に東京湾で発生したダイヤモンド・グレース号原油 流出事故における流出油拡散範囲の再現計算を行った.

2. 使用データ

図-1 に東京湾における 2007 年の HF レーダー設置地 点(▲)とその流れの解析点(•),風況の観測所(★),事 故発生地点(■)を示す.事故発生地点は中ノ瀬付近(北 緯 35 度 21 分,東経 135 度 43 分)である.

流況の推算には HF レーダーによる表層流データを用 いる.東京湾では国土交通省により沿岸に3台のレーダー が設置されており,流速の解析点は241 地点(2007年)で ある.2006年4月~2007年12月における毎正時の時系 列データを使用した.

風況データには海上保安庁による東京灯標,海ほたる, 第二海堡の3地点での観測結果を用いた.なお,事故時 (1997年7月)の風況データは東京灯標のものしか得られ なかったので,それがHFレーダーの全観測点で作用する と仮定した.黒部ら¹⁾により,東京湾では湾全域で海上風 の挙動が似ていると示唆されているからである.また,海上 10mの風速に補間するために,7分の1乗則を用いた.

図-1 東京湾におけるHFレーダーの観測範囲(2007年)と風況の観測点,事故時の原油流出点

3. 再現計算の流れ

HF レーダー観測結果から事故時の潮流を推算する. 2006年7月1日~15日の15日間データに調和分解を行った.ここで,分解に用いる表層流データから非潮流成分の除去を行った.黒部ら¹⁾により,表層流には潮流成分と 周期が近い非潮流成分の影響が含まれており,海上風の 影響が大きいと示唆されている.海上風に起因する吹送 流は,東京湾のような閉鎖性海域においても卓越する.そ こで吹送流に着目し,表層流データと同期間の海上風デ ータを用いて式(1a), (1b)より推算した.

$$V_{Wx} = \alpha_W \sqrt{W_x^2 + W_y^2} \sin(\theta_0 + \theta_d)$$
(1a)

$$V_{Wy} = \alpha_W \sqrt{W_x^2 + W_y^2} \cos(\theta_0 + \theta_d)$$
 (1b)

ここで、 V_W は吹送流成分[cm/s]、 a_W は風係数(=3.0%)、Wは海上 10mの風速[m/s]、 θ_0 は風向(北を0とした時計回り の角度)[°]、 θ_d はエクマン螺旋による偏角(=20°) x 表記は 東西方向成分、y 表記は南北方向成分を表す. 吹送流成 分を除去した表層流データに調和分解を行い、事故時の 潮流を推算した.

推算した潮流と,事故時の海上風データ(東京灯標)から推算した吹送流を,式(2a),(2b),(3),(4a),(4b)に示す油 拡散粒子モデル^{2),3)}に与えて再現計算を行った.

キーワード:HFレーダー,表層流,流出油,油拡散粒子モデル,東京湾

連絡先 〒158-8557 東京都世田谷区玉堤 1-28-1 東京都市大学 TEL:03-5707-0104 E-mail:g1281718@tcu.ac.jp

$$x^{t+1} = x^{t} + \Delta t \{ V_{Velx}^{t} + (V_{Sp}^{t} + V_{Di}^{t}) \cos \theta + V_{Wx}^{t} \}$$
(2a)

$$y^{t+1} = y^{t} + \Delta t \{ V_{Vely}^{t} + (V_{Sp}^{t} + V_{Di}^{t}) \sin \theta + V_{Wy}^{t} \}$$
(2b)

$$V_{Di}^{T} = (4D_{H}^{T} / \Delta t)^{1/2}$$
(3)

$$V_{Sp}^{t} = \sum k_1 \frac{r_{ij}}{r_{ij}^2} \qquad h_1 \ge h$$
 (4a)

$$V_{Sp}^{t} = \sum k_2 \frac{r_{ij}}{r_{ij}^4} \qquad \qquad h_1 \le h \tag{4b}$$

ここで, xは各粒子の東西方向距離[m], Δt はタイムステッ プ(=3600[s]), V_{Wl} は推定潮流[m/s], V_{sp} は油拡散項[m/s], V_{Di} は渦拡散項[m/s], D_H はスマゴリンスキーモデルより算 出した渦動拡散係数[m²/s], θ は0~2 π の一様乱数, k_1 , k_2 : それぞれ係数0.08[m²/s], 0.2[m⁴/s], h_1 は油拡散速度にお いて, 慣性力から粘性力へ支配的な力が切り替わる際の 油層厚判定値, r_{ij} は着目粒子からその他の粒子までの距 離 [m], hは着目粒子油層厚[m], 同様にy表記は南北方 向成分を表す. なお, h_1 :油層厚判定値は油の特性によっ て異なり, 本研究においては h_1 =1.8[mm]を用いた.

実際の流出量と同量である約 1,500k を流出量とした. 連続流出を再現するため,事故発生時刻から 3 時間後ま では毎正時に粒子を 250 個ずつ流出させ,合計 1,000 個 を流出させた.

4. 計算結果

吹送流成分について3つのcaseで計算を行い比較した. 計算条件を表-1に示す. case 1は風係数(a_W =3.0%)と偏角 (θ_d =20°)を考慮した吹送流. case 2は吹送流成分なし. cas 3は風係数(a_W =3.0%)と偏角(θ_d =0°)とした. 図-2に各case における流出29時間後の粒子拡散範囲を示す. 市橋ら⁴) による航空写真を現場観測による拡散範囲として, 破線で 囲んだ範囲で示し計算結果の比較に用いた.

図-2より, case 1は粒子が観測範囲内に多く分布してお り, 良い再現性が得られた. case 2では粒子が湾口部に拡 がっており, 観測範囲内に粒子が分布しなかった. これより, 流出油の拡散計算において風の影響は大きいことが分か る. case 3では粒子が観測範囲より神奈川県側に分布し, 観測範囲内にはあまり分布しない結果となった. つまり, 偏 角を考慮して吹送流を推算することにより, 拡散計算の再 現性が向上すると考えられる.

5.結論

本研究では東京湾において, HF レーダーによる表層流

の観測結果と,海上風の観測結果を用いて,流出油拡散 範囲の再現計算を行った.その結果,HF レーダーによる 表層流の観測結果から,非潮流成分を除去して潮流成分 を抽出することは,潮流の推算に有効であることが示唆さ れた.そして,推算した潮流の活用として,流出油におけ る拡散予測の可能性が示唆された.

表-1 計算条件				
case	α_W [%]	θ_d [degree]		
1	3.0	20		
2	0.0	0		
3	3.0	0		

図-2 流出油拡散範囲の計算結果(流出後29時間後) case 1:風係数と偏角あり(α_W =3.0%, θ_d =20°) case 2:風係数と偏角なし(α_W =0.0%, θ_d =0°) case 3:風係数ありと偏角なし(α_W =3.0%, θ_d =0°)

参考文献

- 黒部和弘,村上和男:HF レーダーによる東京湾の表 層流の測定結果と潮流および風との関連,海洋開発 論文集, Vol.24, pp. 855-860, 2008.
- ・城田英之,黒田貴子,間島隆博,田中義照,宮田修, ・樋富和夫,小林佑規,山口勝治,高井隆三,篠野雅 彦,山之内博,穴井陽裕,小島隆志,今井祥子,原正 一:船舶からの油及び有害液体物質の排出・流出によ る海洋汚染防止に資する研究,海上技術研究所報告, 第9巻,第3号, pp.147-162, 2009.
- 3) 松崎義孝,藤田勇:油拡散を考慮した流出油の数値 計算法の開発,港湾空港技術研究所資料,No.1225, p.p.5-8, 2012.
- 市橋理,赤松幸生:ダイヤモンド・グレース号流出油の 漂流状況,写真測量とリモートセンシング, Vol.36, No.4, pp.4, 1997.