氾濫流の特性に着目した FEM 氾濫解析メッシュ生成システムの構築

日本工営株式会社 正会員 〇浜田 秀敬,一言 正之, 桜庭 雅明 国土交通省 国土技術政策総合研究所 水害研究室 正会員 伊藤 弘之

1. はじめに

従来の氾濫解析は直交格子を用いたものが多く,堤 防,盛土などの線構造物の形状は直交格子の辺上の境 界条件として仮定する.しかしながら,実際の市街地 における氾濫流の挙動は道路空間や建物等の影響が支 配的になることが多く,氾濫解析を行うにあたっては この影響を出来るだけ忠実に扱うことが望まれる.最 近ではこれらの境界形状を適切に表現するために,非 構造格子に基づく氾濫解析の適用も試みられているが, 地形や構造物の形状を表現するためのメッシュ生成が 煩雑となるといった課題がある.

本研究は、構造物形状や地形勾配の条件を適切に考 慮した氾濫解析のためのメッシュ生成を行い、更にメ ッシュ生成をユーザフレンドリーに行うことが可能な システムの構築を行ったものである.

2. システム概要

本研究により構築した FEM 氾濫解析メッシュ生成シ ステム(以下「本システム」という.)の画面構成,仕 様,機能概要を図 1,表 1に示す.システムの特徴は, 以下に示すとおりである.

➢ GIS を用いたユーザインターフェース

標高,土地利用データの地図上への可視化や計算領 域等を地図上で設定する等,図1に示すようにGISを 用いて一連の作業を可能とし,氾濫解析用メッシュを 作成できるようにした.ユーザは,地図や生成された メッシュ等の表示を任意に変更することが可能であり, メッシュ生成の条件変更もシステム上で自在に行うこ とができる.

> オープンソースの利用

本システムの基本システムである GIS には,オープ ンソースである "Map Window GIS"¹⁾を使用することで, 有償の GIS エンジンを購入しなくても利用することが できる仕組みとした.

公開データを活用したメッシュ生成

一般公開されている国土地理院標高データ,国土政 策局土地利用データ等を取り込む機能を設け,一般公 開されているデータからもメッシュ生成ができるよう にした.また,これらのデータを一括して GIS で表示 できるような機能を有するようにした.

3. メッシュ生成の流れ

非構造格子による氾濫解析のメッシュ生成は,図 2 の手順であり GIS と連携し処理を行っている.以下に 各手順について説明する.

図 1 本システムの画面構成

仕様	内容
開発環境	Microsoft C# .NET Framework3.5
利用アプリケーション	Map Window GIS v4.8

	機能	概要
	入力機能 (データ取り込み)	国土地理院 基盤地図情報 5m メッシュ,基盤 地図情報25000,国土政策局 国土数値情報 土 地利用 1/10 細分メッシュ,オルソ画像等
	計算領域指定	矩形・任意形状での計算領域指定
	境界条件の設定	道路や盛土・河道等の線構造物の設定
	表示機能	 ① ンステム画面上での二次元表示(有限要素分割) ② Pov-Ray, SciLab 等のデータ型式変換・出力 による鳥瞰図表示 ③ 拡大・縮小,要素・節点番号の表示 ④ 氾濫解析結果の表示
ſ	解析データ変換	氾濫解析用のデータに変換・出力する機能

(1)標高・土地利用データの取り込み

データの取り込みは、特別な変換をしなくても取り 込めるように GIS の汎用フォーマットである SHP 形式 等のデータを自動的に読み込むことを可能とした.

(2)計算領域の設定・構造物条件の設定

地図画面上でマウス操作により計算領域及び河川構 造物条件(ブレークライン)が設定できるようにした. 図3に計算領域の設定、及び構造物入力の一例を示す.

(3)メッシュ生成条件の設定

メッシュ生成条件として,最大・最小メッシュ幅, 粗密の設定方法・条件(粗密レベル・粗度係数)を設定 できるようにした.

(4) Delaunay 分割法に基づく非構造格子分割

有限要素法等による非構造格子の生成には, Delaunay 分割法に基づく方法がよく用いられるが,解 析領域の形状,線構造物や盛土などの境界形状及び傾 斜や粗度に応じたメッシュ生成には,工夫が必要であ る.以下にその内容を示す.

キーワード GIS,非構造格子,氾濫解析,メッシュ生成システム 連絡先 〒300-1259 茨城県つくば市稲荷原2304 日本工営株式会社 中央研究所 TEL029-871-2034

図 2 メッシュ生成手順

1) 複雑形状への適用

Delaunay 分割法は境界という概念を持たないことか ら一般に凸領域にしか適用することができないため, 境界の概念を持たせ任意領域に対して適用可能とした 修正 Delaunay 三角分割法²⁾を適用した.

2)河川構造物を表現したメッシュ生成

道路や盛土・河道などの線構造物は、氾濫現象へ与 える影響が大きい. これらの影響を氾濫解析で適切に 評価するため、線構造物の形状をブレークラインとし てメッシュ生成の入力データとし、線形状をメッシュ の辺で適切に表現させるものとした³⁾. (図 4 参照)

図 4 ブレークラインを考慮した非構造格子分割 3) 地形の傾斜等に応じたメッシュの粗密付け

計算の精度向上及び計算効率化のため、メッシュの 粗密付けは 表 2に示す3つの方法から選択できるもの

とした.システムでは、メッシュ発生間隔の最大・最 小を任意に設定できるようにし、粗密のある節点発生 から有限要素生成が可能となるようにした.

粗密付けの根拠	粗密付け手法
地形の勾配	局所的な速い流れが生じる箇所については,現 象を詳細に評価する必要があると考えられる. 地形の勾配に応じて節点密度を自動設定し,流 速が速くなるような箇所はメッシュサイズを小 さくするように粗密付けを行う.
地形の勾配変化 (標高の二階微分)	勾配急変箇所では水理現象が複雑になるため, 標高の2回微分値(勾配の微分値)に応じて節 点密度を自動設定し,勾配急変化所はメッシュ サイズを小さくするように粗密付けを行う.
土地利用や建物	氾濫による被害を評価するためには、市街地な ど人口・資産が集中する地域における浸水を詳 細に解析する必要があるため、土地利用や建物 配置に応じてメッシュの粗密付けを行う.

表 2 粗密付けの設定手法

4. メッシュ生成例

構築したシステムを用いて, 一級水系の庄内川流域 を対象としてメッシュ生成を行い、適切に生成できる ことを確認した.図5に非構造格子分割図を示す.

図 5 非構造格子分割図(上:領域全体,下:拡大)

5. おわりに

本研究では, FEM による氾濫解析の精度向上及び作業 効率化に資するメッシュ作成システムを構築した. そ の結果、従来煩雑であったメッシュ生成を任意の条件 で容易に行うことが可能となった. また本システムを 実流域に適用し、構造物・地形の条件を適切に表現し た氾濫解析が可能となることを確認した.

謝辞

本研究に際し、有益な御助言をいただいた中央大学 樫山和男教授に深謝致します。

参考文献

- 1) Map Window GIS: http://www.mapwindow.org/
- 2) 谷口健男:FEMのための要素自動分割,森北出版社, 1992.
- 3) K.Kashiyama, H.Hamada, and T.Taniguchi:Large Scale Finite Element Simulation and Modeling Using GIS/CAD for Environmental Flows in Urban Area, International Conference on Computing in Civil and Building Engineering, ICCCBE, 10, (2004)