鋼トラス橋格点部の終局限界状態と座屈変形に関する解析的検討

早稲田大学	学生員	〇川口	徹朗	(独)	土木研究所	正会員	村越	潤
早稲田大学	正会員	笠野	英行	(独)	土木研究所	正会員	遠山	直樹
早稲田大学	フェロー会員	依田	照彦	(独)	土木研究所	正会員	澤田	守
首都大学東京	フェロー会員	野上	邦栄					

1. 研究目的

現在,高度経済成長期に建設された数多くの道路橋 の高齢化が進んでいる.それに伴い,近年,劣化損傷 に起因する重大事故が報告されている.トラス橋の主 構部材においては,一部の部材の損傷が橋全体系の安 全性に与える影響が大きい.特に,主構部材を結びつ ける格点部が損傷した場合,重大な事故につながる恐 れがある.そこで,本研究では撤去後の鋼トラス橋の 格点部を対象として,載荷試験の結果とFEM解析の結 果を比較することにより,格点部の終局限界状態を調 べることを目的とする.

2. 載荷試験

今回対象としたのは、実際に供用されていた5径間 ゲルバートラス橋の格点部である.載荷試験は図 2.1 に示す方法で行った.実験では、図 2.1 中赤丸で示し た圧縮斜材フランジの絞り部より少し上の位置で局部 座屈が発生し、角割れが2か所発生した。図 2.2 に載 荷試験により局部座屈が生じた圧縮斜材、角割れの様 子(図中赤丸)の写真を示す.

3. 解析手法

載荷試験の結果を FEM 解析により再現するために、 有限要素法の汎用ソフト DIANA¹⁾を用いて解析を行っ た.図 3.1 に示すように、載荷試験に用いた格点部をシ ェル要素でモデル化した. 斜材とガセットプレートを 結合するリベットには、ばね要素を用いた.このモデル を下記3つの条件に分けて解析を行った.まず、比較 のために、健全なモデルを CASE-1 とする. 次に、角割 れを再現するために図3.1に示した位置にあらかじめ 亀裂 (長さ 15cm)を入れたモデルを CASE-2 とする(図 3.1 に示した亀裂位置の節点を非共有にする). CASE-2 の条件に加え、圧縮斜材の全断面に均一に 0.5mmの腐 食を考慮(板厚 8.5mm)したモデルを CASE-3 とする.ま た鋼材の構成則には、実際の引張試験から得られた結 果を用いた.その構成則を図3.2に示す.非線形解析 における載荷方法は変位制御を用いて、圧縮斜材に段 階的に載荷し、最終的に変位が12mmに至るまで解析を 続けた. 降伏条件は von Mises の降伏条件によった.

連絡先;〒169-8555 東京都新宿区大久保 3-4-1 早稲田大学社会環境工学科 依田研究室

4. 解析結果

解析により得られた荷重-変位曲線と載荷試験に より得られた荷重-変位曲線を図4.1に示す.解析か ら得られたグラフの傾きは、載荷試験で得られた傾き とほぼ一致する結果となった.また,最大荷重に関し ては解析値の方が,すべてのCASEにおいて載荷試験結 果を上回った.表4.1に最大荷重の値を示す.CASE-1 では斜材絞り部において局部座屈を起こし,CASE-2 と CASE-3 においては,亀裂部で局部座屈が発生した. CASE-3 の変形モードを図4.2,図4.3に示す.図2.2 と図4.3を比較してみると,CASE-3の解析では,局部 座屈が発生した位置(角割れ発生部)ではフランジ,ウ ェブともに座屈の凹凸が反転しているものの,載荷試 験結果に一番近い変形モードを再現することができた.

また、図2.1に示した斜材フランジの絞り部におけ る荷重と主ひずみの関係を、図4.4、図4.5及び図4.6 に示す.主ひずみの値は、弾性域では同様な結果を得 ることができたが、塑性域に入ってからは、実験結果 を一部再現することが出来なかった.

図 4.1 荷重-変位曲線 表 4.1 最大荷重の比較

	実験値	CASE-1	CASE-2	CASE-3
最大荷重(kN)	2337	2710	2620	2450
解析值/実験值(%)		116.0	112.1	104.8

図 4.2 CASE-3 の格点部の変形図 30 倍(最大荷重時)

5. 考察

今回の解析で, CASE-3 の解析が載荷試験に近い荷重 変位曲線,変形モードの概形を再現できた理由として は、載荷試験の結果に整合するようにあらかじめ亀裂 を導入したことが大きい.この結果より、載荷試験に 用いた格点部の斜材には試験開始前に亀裂や溶接不良 があった可能性が考えられる.一方、荷重-主ひずみ の関係は概ね一致したが、一部塑性域で実験値と解析 値の不一致や、忠実な変形モードの再現性などの点に おいて課題が残る.したがって、より正確な解析を行 うために、溶接不良の解析モデルへの反映の仕方をさ らに工夫・検討していく必要があると考えられる.ま た腐食量の入力は、斜材に 0.5mm の均一腐食を与え ているが、より詳細なモデル化等についても引き続き 検討していく必要があると考えられる.

謝辞:本研究は、3者((独)土木研究所、首都大学東 京、早稲田大学)による、腐食劣化の生じた橋梁部材の 耐荷性能の評価手法に関する共同研究の一環として行 なったものである.

参考文献

 JIP テクノサイエンス:DIANA9 ユーザーマニュアル 日本語参考資料(解析手法), 2005.