当て板補強したトラス格点部の耐荷性能に関するFEM再現解析について

早稲田大学	学生員	○奥野	雅史
早稲田大学	正会員	笠野	英行
早稲田大学	フェロー	依田	照彦
首都大学東京	フェロー	野上	邦栄

1. 研究目的

近年、国内外で橋梁の重大損傷等の報告がされている。 橋梁の崩落事故として例の代表の一つに、平成19年8月1 日に、米国のミネソタ州ミネアポリスにあるミシシッピ 川に架かる州間高速道路橋(I-35W橋)がある.崩落の 原因として、トラスの格点部のガセットプレートの厚さ が足りなかったことが挙げられる.今後、日本でも50年 以上経過した橋梁が増加するため、同様の事故が起こる 可能性がある.そこで本研究では、実際に使用されてい た鋼トラス橋の格点部と、有限要素法の汎用ソフトによ り作成した格点部のモデルに対して、圧縮斜材から圧縮 載荷を行い、耐荷力の違いや変形モードなどの力学的挙 動を調べた.さらに、補強されたガセットプレートのひ ずみの変化なども調べた.

2. 載荷試験

今回対象とした部位は、実際に供用されていた5径間 ゲルバートラス橋の格点部である.この格点部の載荷試 験を,図2.1に示す方法で行った.今回対象とした格点 部は、腐食した格点部を補強するために、ガセットプレ ートに当て板を施している.

実験の結果,図2.2に示すように,圧縮斜材の載荷点 とフランジの絞り部との間で局部座屈を引き起こす結果 となった.また局部座屈の生じた位置に角割れが観察さ れた.

図2.1 載荷実験の概要図

(独) 土木研究所 正会員 村越 潤(独) 土木研究所 正会員 遠山 直樹(独) 土木研究所 正会員 澤田 守

図2.2 実験での圧縮斜材の変形図

3. FEM解析

載荷試験結果を,FEM解析により再現するために,有 限要素法の汎用ソフトDIANA¹¹を用いて解析を行った. 図3.1に示すように,鋼トラス橋の格点部をシェル要素 を用いて作成し,斜材とガセットプレートと当て板を結 合するボルトには,ばね要素を用いた.また,非線形解 析は,変位制御により行った.

図3.1 格点部モデル図

DIANAを用いて行った非線形解析において、荷重が最 大に達した時の全体図を図3.2に示す.図3.2に示すよう に、FEM解析でも圧縮斜材の載荷点とフランジの絞り部 との間で局部座屈が生じる結果となり、載荷試験の変形 モードがFEM解析により再現できた.

最大荷重に着目すると、載荷点の変位が4.32mmの時に、 最大荷重2880kNを得た.表3.5に示すように、実験結果 と比較すると、実際に使用されていた鋼トラス橋の格点 部の最大荷重は、2376kNであり、約500kNの誤差が生じ ている.

キーワード;格点部 腐食 FEM 解析 連絡先;〒169-8555 東京都新宿区大久保 3-4-1 早稲田大学社会環境工学科 依田研究室 解析により得られた荷重-載荷点変位曲線と載荷試験 により得られた荷重-載荷点変位曲線を図3.4に示す.

	載荷実験	解析結果
最大荷重(kN)	2376	2880

図3.2に示したひずみの計測位置において,解析により 得られた最大と最小主ひずみと載荷試験から得られた最 大と最小主ひずみを比較したものを、図3.5と図3.6に示 す.図3.5と図3.6により、実験結果と解析結果における 最大・最小主ひずみのグラフが良い一致を見せている.

図3.6 7-AA-R7の最大・最小主ひずみ

4. 考察

図2.2と図3.2に示すように、載荷試験とFEM解析とも に、圧縮斜材の載荷点とフランジの絞り部との間で局部 座屈が生じる結果となり、今回の載荷試験の変形モード をFEM解析により再現できた.また、図3.4に示すように、 最大荷重はFEM解析から得られた値の方が約500kN大きい 結果となった.これは、実際の斜材の板厚が、腐食によ り、減少していたことや溶接残留応力の影響が理由であ ると考えられる.

また図3.5と図3.6に示すように、載荷実験とFEM解析 における最大・最小主ひずみの図も、ほぼ一致する結果 となったことから、妥当な再現解析モデルが作成できた と考えられる. 今後、解析の精度をより高めていくため に、実際の斜材やガセットプレートの腐食量や溶接残留 応力の影響を考慮した上で、FEM解析を行う必要がある.

謝辞:本研究は、3者((独)土木研究所、首都大学東 京、早稲田大学)による、腐食劣化の生じた橋梁部材の 耐荷性能の評価手法に関する共同研究の一環として行っ たものである.

参考文献

JIPテクノサイエンス: DIANA9 ユーザーマニュアル
日本語参考資料(解析手法), 2005.