FWD による既設 RC 床版のたわみ測定(その 2)

岩手大学	正会員	○宮村	正樹
東日本高速道路(株)	正会員	金子	健
㈱ネクスコ・エンジニアリング東北	正会員	早坂	洋平

1. はじめに

東北地方を始めとする積雪寒冷地では,大型車交通による疲労損 傷に加え,凍結抑制剤の散布に伴う塩害や凍害との複合劣化により, RC 床版の損傷が顕在化している.そのため,床版の健全度評価手 法の確立が望まれる.

本論文では,既設 RC 床版に対する FWD 試験結果に基づいて, 加振力やたわみ挙動,床版劣化度等の関係について整理するととも に,舗装の局部変形の影響について分析し,FWD 試験による床版 の健全度評価手法の確立に向けた基礎的検討を行う.

2. 試験概要

対象橋梁一覧表を表-1, 吾妻橋の測定断面図を図-1 に示す. 測定 位置は連続する2格間とし, 対傾構位置及び床版格間中央位置の5 測点(起点側からD1~D5)とした. 測定位置の概要図を図-2 に示す.

本試験では FWD 測定車両により路面に加振を行い,その際の変 位を FWD 試験車両に搭載されているたわみセンサ(路面のたわみ) と,リング式変位計(主桁及び床版下面のたわみ)で測定した.

なお,FWD 試験での設定荷重(加振力)と実載荷荷重は若干の乖離があるため,単位荷重当たりのたわみ量は式(1)により求めた.

[単位荷重当たりのたわみ量]=

=[FWD 試験時たわみ量]×49.0^{**}/[実載荷荷重(kN)] ・・・式(1) ※49kN 当たりの床版たわみ量算定時

3. 床板たわみと劣化度の整合性の検討

49kN 加振時における FWD 試験結果として, 吾妻橋及び 中山橋の例を表-2 に示すが, 床版の劣化度¹⁾が比較的顕著と 判定された床版付近でのたわみ量が最大となる傾向が見ら れた.この傾向はリング式変位計による床版下面の変位計測 結果と同様であり, FWD 試験で得られるたわみ量に着目す ることで床版の健全度評価が可能であることが示唆された.

なお,加振位置から測点までの距離が離れた場合,加振位 置との損傷状況も異なってくることから,表-1(2)に示すよう に最大たわみ量の発生箇所にバラツキが確認された.しかし, 加振位置から 60cm 以内であれば,最大たわみ発生位置のバ ラツキは見られないことから,FWD 試験による健全度評価 範囲は,加振位置から半径 1m 程度であると考えられる.

表	-1 対象橋梁一覧表	
橋梁名	構造形式	橋長
松塚川橋(下)	鋼単純非合成鈑桁	32.9m
吾妻橋(上)	PC 単純合成桁×3 連 鋼4径間連続非合成鈑桁	248.3m
中山橋(下)	鋼単純合成鈑桁	29.1m

1.11	1 /	h	ر√E	lı İ	4	+ l	4	卑	Ξ.,		4	ШĻ	ਜ	f I	<u>))</u>			
154	I	/	/E	111	11-	• 1	17	TÉ	ŧ (1.) ለተ	.		- 1	×1			

表-2(1) たわみ量と劣化度の関係(吾妻橋)

	$\Sigma 2(1$	j	- 420)	- E		X */ 5) /IV [7		ы)
加振		加振	位置か	らの距离	准毎のた	わみ量	(mm)		少し中
位置	0cm	20cm	30cm	60cm	90cm	120cm	150cm	200cm	为旧度
D1	-0.15	-0.14	-0.13	-0.12	-0.11	-0.09	-0.08	-0.06	-
D2	-0.16	-0.15	-0.14	-0.13	-0.12	-0.11	-0.10	-0.09	С
D3	-0.15	-0.15	-0.14	-0.14	-0.13	-0.12	-0.12	-0.12	
D4	-0.24	-0.24	-0.23	-0.20	-0.18	-0.17	-0.16	-0.15	В
Df	0.21	0.20	0.20	0.22	0.21	0.10	0.10	0.17	
05	-0.31	-0.29	-0.28	-0.23	-0.21	-0.19	-0.18	-0.17	F

₩-2(2)	たわみ量と劣化度の関係(中止	[橋)
3-2121		

加振		加振位置からの距離毎のたわみ量(mm)									
位置	0cm	20cm	30cm	60cm	90cm	120cm	150cm	200cm	为化皮		
D1	-0.33	-0.32	-0.32	-0.29	-0.27	-0.25	-0.23	-0.21	D		
D2	-0.38	-0.37	-0.36	-0.33	-0.30	-0.27	-0.26	-0.23	D		
D3	-0.33	-0.32	-0.31	-0.29	-0.27	-0.25	-0.24	-0.23			
D4	-0.33	-0.31	-0.31	-0.29	-0.27	-0.25	-0.23	-0.22	Е		
D5	-0.35	-0.35	-0.34	-0.32	-0.31	-0.27	-0.25	-0.23	Е		
×±г	口名主	い十立い	ナ昰十	・たわ	7, 县系	《上位	罟た:				

劣化度はA(劣化が顕著)~E(健全)の5段階評価で示す.

キーワード FWD, RC 床版,たわみ測定,健全度評価

連絡先 〒980-0802 仙台市青葉区二日町 13-17 ㈱福山コンサルタント TEL:022-262-5250

4. たわみ曲線の勾配と劣化度の整合性の検討

49kN 加振時における FWD 試験結果として, 吾妻橋における D5 加振時の路面上のたわみ曲線を図-3, 49kN 加振時の各測点間 のたわみ曲線の勾配を表-3 に示すが, たわみ曲線の勾配の最大 値発生箇所は表-2(1)に示した床版の劣化箇所と一致しており, た わみ曲線の勾配と劣化度との関連性が確認された. また, 他の橋 梁においても同様の傾向を示した.

以上より,FWD 試験による路面上のたわみ曲線の勾配に着目 することで床版の健全度評価が可能であることが示唆された.な お,各橋ともに加振位置から 60cm~120cm 付近のたわみ量を結 ぶ勾配が最大値を示す傾向があり,健全度の評価範囲については 半径 60cm~120cm 程度が適当であると考えられる.

5. 主桁たわみの影響検討

主桁たわみの影響検討は,加振位置における床版上下面に加え 隣接する主桁位置でたわみ計測を実施した吾妻橋及び松塚川橋 を対象とし,D3 断面における各部位のたわみ計測結果を表-4 に 示す.その結果,路面のたわみ量が大きくなる傾向が見られた. これは,FWD たわみセンサは舗装面のたわみ量を計測するため, 主桁たわみや舗装の局部的変形の影響が原因と想定される.

ここで, 主桁下面のたわみ量に着目すると, 計測毎にたわみ(-) や浮き上がり(+)が見られるなど, 測定結果にバラツキが見られ た. これは, 主桁が交通荷重等により常時振動していることが原 因と考えられる. これに対して, 路面のたわみ量は計測毎の差異 が小さいことから, 路面のたわみ量には主桁の影響が含まれてい ないものと推測される.

0.00 -0.10 -0.20 量(mm) -0.30 -0.40-0.50 -49kN加振時 -0.60 -98kN加振時 -0.70 -0.80 100 150 200 50 加振位置からの距離(mm)

図-3 たわみ曲線(吾妻橋, D5 加振時)

(日安福)

thin the		各測。	点間のた	わみ曲線	泉の勾配((×10 ⁻⁵)	
加振 位置	0cm~	0cm~	0cm~	0cm~	0cm~	0cm~	0mcm~
	20cm	30cm	60cm	90cm	120cm	150cm	200cm
D1	3.66	4.53	4.20	4.32	4.57	4.44	4.09
D2	2.79	3.93	3.61	3.57	3.65	3.48	3.04
D3	1.72	2.77	2.71	2.43	2.33	2.10	1.70
D4	2.12	4.65	6.37	6.41	6.16	5.75	4.76
D5	6.22	9.67	11.72	10.85	9.57	8.37	6.70

表-4(1) 各部位のたわみ計測結果(吾妻橋)

	<pre></pre>					\\				
加振力	渔中店 墨	FWD試験たわみ量(mm)								
(kN)	側足位直	1回目	2回目	3回目	4回目	5回目	平均			
49.0	路面	-0.16	-0.15	-0.15	-0.15	-0.15	-0.15			
	床版下面	-0.10	-0.10	-0.11	-0.10	-0.10	-0.10			
	主桁下面(平均)	-0.01	-0.03	0.00	0.01	0.06	0.01			
	路面-床版下面	-0.06	-0.05	-0.05	-0.05	-0.05	-0.05			
	路面	-0.29	-0.30	-0.29	-0.31	-0.29	-0.30			
08.0	床版下面	-0.20	-0.21	-0.21	-0.21	-0.20	-0.21			
98.0	主桁下面(平均)	-0.06	-0.04	-0.03	-0.01	-0.07	-0.04			
	路面-床版下面	-0.09	-0.09	-0.09	-0.10	-0.09	-0.09			

表-4(2) 各部位のたわみ計測結果(松塚川橋)

加振力	测空位墨			たわみ	童(mm)		
(kN)	側足位直	1回目	2回目	3回目	4回目	5回目	平均
49.0	路面	-0.20	-0.20	-0.21	-0.21	-0.20	-0.20
	床版下面	-0.10	-0.10	-0.10	-0.09	-0.09	-0.10
	主桁下面(平均)	-0.03	-0.04	-0.09	0.04	-0.03	-0.03
	路面-床版下面	-0.11	-0.10	-0.11	-0.12	-0.11	-0.11
	路面	-0.42	-0.42	-0.43	-0.43	-0.43	-0.43
00.0	床版下面	-0.18	-0.18	-0.18	-0.17	-0.18	-0.18
96.0	主桁下面(平均)	-0.01	-0.01	-0.01	-0.06	-0.08	-0.04
	路面-床版下面	-0.25	-0.24	-0.25	-0.26	-0.25	-0.25

6. 舗装の局部変形の影響検討

表-4 に示すように,路面と床版下面のたわみ差は,加振力と比例関係にあることが確認された.また,路面のたわみ量が大きくなった理由として,舗装の局部変形の影響が挙げられる.なお,吾妻橋における路面と床版下面のたわみ差は,45kN換算時で0.046mm(=0.05×45.0/49.0)となり,既往の論文²⁾での舗装の局部変形量(45kN加振時で0.05mm)とほぼ一致した.しかし,松塚川橋における床版上下面のたわみ差は,45kN換算時で0.100mm(=0.11×45.0/49.0)と大きい傾向を示し,舗装構成等の影響によりたわみ差が異なったと考えられる.

対象橋梁の舗装の種類は、松塚川橋がギャップアスファルト混合物、吾妻橋が密粒度アスファルト混合物で ある.一般的に、ギャップアスファルト混合物は、密粒度アスファルト混合物と比較して耐久性が低く、供用 後のひび割れが多い傾向を示す.加えて、松塚川橋は舗装改良後17年経過しており、ひび割れの発生や水密 性の低下等の経年劣化が確認されていることから、たわみ差(=舗装の局部変形量)が大きいものと考えられる.

7.おわりに

本検討により,FWD 試験による床版の健全度評価方法の有効性が確認された.今後,床版・舗装諸元や劣化 状況を模擬した FEM 解析を行い,FWD 試験での測定範囲や健全度評価方法について検討する予定である.

参考文献

1) 東日本高速道路㈱:設計要領第二集橋梁保全編, 2012.7

2)石川裕一,有馬直秀,青山寛伸:道路鋼橋 RC 床版の重錘落下式たわみ測定に関する基礎研究,土木学会第 67回年次学術講演会,2012.9