京都大学工学部	学生会員	由井	洋和,衣川	哲平
京都大学大学院	フェロー会員	岡	二三生	
京都大学大学院	正会員	木元	小百合 , 肥後	陽介

1.はじめに

南海トラフを震源とするマグニチュード 9.0 クラスの巨大 地震の発生が懸念されているが,海溝型の連動地震である南 海トラフ巨大地震は地震動の継続時間が長いため,液状化の 被害が広がると予想される.本研究では砂の繰返し弾塑性構 成式¹⁾と粘土の繰返し弾粘塑性構成式²⁾を用いた土-水連成 の有限要素解析プログラム LIQCA2D11³⁾を用いて,継続時 間などを考慮し,南海トラフ巨大地震発生時の応答加速度や 液状化の発生状況などの検討を行うため,大阪市域の多数の 地点において動的解析を実施した.また,液状化危険度指数 (Liquefaction Risk Index,LRI)を新たに定義し,大阪市域での 液状化挙動を予測した.さらに液状化危険度指数の検討を行 うために,兵庫県南部地震の際に液状化彼害が大きかった地 点でその時の地震動を用いて液状化危険度指数を求めたほか, P_L値を様々な方法で導出した.

2.解析モデル 本研究で用いたパラメータを表 1~3,液状 化強度曲線を図1に示す.本研究では大阪市域の多数の地点 のボーリングデータを元に地盤の一次元モデルを作成した. モデル図の例を図2に示す.モデルの深さは150m であり, 境界条件に同一深度等変位境界を用いた.また,底面には粘 性境界を用いている.図2に示した二つのモデルは此花区で は液状化層があり,阿倍野区では液状化層が存在しなかった. 入力地震動には図3に示す杉戸らによる南海トラフ巨大地震 の想定地震動を用いた⁴.想定地震動は震源を日向灘とし, 最大加速度は572.6(gal),最大速度は52.3(cm/s)となっている. 3.解析結果

3.1 地表面応答加速度,地表面応答速度

先述の二地点の地表面最大応答加速度と地表面最大応答 速度を表4に示す.液状化が発生した此花区では地表面最大 応答加速度が大きく減衰したが,速度は減衰していない.液 状化が発生しなかった阿倍野区では地表面応答加速度はほと んど減衰しておらず,速度の大きな増幅が見られた.

3.2 有効応力減少比,液状化危険度指数 有効応力減少比(ESDR)は右の式で表される. キーワード 液状化、地震応答解析、地盤震害

表] /	バラメー	9 1

Parameter	As-U	As-L	Dg1	Ac	Dc
Density p (t/m³)	1.8	1.8	1.9	1.66	1.8
Coefficient of permeability k/γ_w (m/s \cdot m³/kN)	3.98 × 10 ⁻⁸	5.6 × 10 ^{.7}	1.0×10^{-6}	5.87 × 10 ⁻¹¹	5.40×10 ⁻¹
Initial void ratio e ₀	0.623	0.9	0.9	1.25	1.20
Compression index λ	0.0875	0.01	0.01	0.3410	0.217
Swelling index ĸ	0.0068	0.003	0.003	0.0190	0.0217
Normalized initial shear modulus G_0/σ'_{m0} (kPa)	175.5	512	541	75.2	128.25
Stress ratio at Maximum Compression M^*_{m}	1.12	0.909	0.909	1.24	1.30
Stress ratio at failure M*r	1.36	1.158	1.336	1.24	1.30
Quasi-overconsolidation ratio OCR($=\sigma'_{mai}/\sigma'_{m0}$)	1.0	1.20	1.50	1.0	1.9
Hardening parameter B [*] ₀ , B [*] ₁ , C _f	3000,5,15	3800,70,0	3000,5,0	100,40,10	350,50,
Structure parameter $\sigma'_{mai}/\sigma'_{mai}\beta$	-	-		0.30,3.6	0.35,3.0
Control parameter of anisotropy C _d	2000	2000	2000	-	-
Prameter of Dilatancy D*0,n	2.75,4.75	1.00,6.00		-	-
Reference Value of plastic Strain $\gamma_r^{\rm p*}$	0.0033	0.0050		-	-
Reference Value of elastic Strain $\gamma_r^{E^{\star}}$	0.019	0.010		-	-
Viscoplastic parameter m'	-	-	-	24.68	20.00
Viscoplastic parameter (1/s) C ₁	-	-	-	1.00 × 10 ⁵	1.00×10
Viscoplastic parameter (1/s) C ₂	-	-	-	3.83 × 10 ⁶	1.16×10
Hardening parameter A2*, B2*	-	-	-	5.9,1.8	5.9,1.8
Strain-dependentelastic modulus parameter α, r	-	-	-	10,0.4	0,0

表3 パラメータ3

砂層(2)

砂層③ 深層①

連絡先 〒615-8540 京都府京都市西京区京都大学4CクラスターC1棟 TEL 075-383-3193

ここで σ_{m0} は初期状態での平均有効応力, σ_m は現在の平 均有効応力である.完全に液状化すると平均有効応力が0 になり,有効応力減少比は1になる.今回の解析では地点 ごとの有効応力減少比の分布を数値化するため,各地層の 有効応力減少比を深さ方向に重み付けして積分し,その値 を液状化危険度指数(LRI)とした.LRI は以下の式で新た に定義した.

$$LRI = \int_0^{20} ESDR \cdot \left(1 - \frac{1}{20}z\right) dz$$

z は地表からの深さである.LRI は地表から深さ 20m まで の有効応力減少比を元に計算しており,深さ 20m まです べての層が完全に液状化した場合,LRI は 10 になる.各 解析地点での地震終了時の有効応力減少比深度分布図と LRI を図 4 に示す.有効応力減少比の深度分布図の横の数 字は地表面からの深さを、上の枠内の数字はその地点の LRI を表している.液状化が発生していない No.10 の阿倍 野区と No.18 の東大阪市の地点では LRI は 3.0 を下回る結 果となった.

4. 液状化危険度指数の評価と PL 値 図 4 に示した No.19 の此花区酉島では兵庫県南部地震の際に淀川沿いの堤防が 最大で 3m 沈下するなどの激しい液状化被害が生じている. そこで、この地点で兵庫県南部地震の時の地震動を用いて LRIを求め,南海トラフ想定地震動を用いて求めたLRIと 比較を行った.今回用いた兵庫県南部地震の地震動は此花 区高見の GL-30m における観測波に方向補正を行ったもの である. 地震動を図 5 に示す. この地震動を用いて No.19 で LRI を求めた結果, その値は 6.002 となった. 日向灘の 地震動に対して No.19 では LRI は 5.713 であり, 値はやや 下回るがかなり激しい液状化が発生すると考えられる.ま た,同様の地点で PL 値を様々な方法で導出した結果,表 5のようになった.表5の日向灘と高見はそれぞれの地震 動の地表面最大応答加速度から求めた P_L 値である.日向 灘と高見の PL 値の大小関係は LRI と一致していたが LRI よりも PL 値のほうが液状化の評価は小さめとなった.設 計水平震度とは道路橋示方書で地盤特性や地震動の種類な どによって決定されており,今回は 392gal とした.表の 値はその震度を用いて求めた PL 値である. 日向灘と高見 の P_L 値が設計水平震度のものに対して小さいのは,液状 化が発生して減衰した加速度を用いている為である.

5. 結論 本研究では動的解析によって大阪市域における 液状化挙動の検討を行った.その結果液状化が発生した地 点では地表面加速度が減衰し,液状化が発生しなかった地

点では地表面加速度は増幅もしくは大きく変化しないこと がわかった.また LRI を定義し各地点で求めた結果,液 状化の被害状況を示す指標として有効であると考えられた. 謝辞 本研究では岐阜大学の杉戸真太先生による南海ト ラフ巨大地震の想定地震動を使用させて頂いた.また、関 西圏地盤情報データベースのボーリングデータを使用させ て頂いた.本研究は平成24 年度科学研究費基盤研究(S) 「国難」となる最悪の被災シナリオと減災対策代表河田 恵昭氏の補助を受けた.記して謝意を表します. 参考文献 1) Oka et al, *Geotechnique*, 49(5), pp.661-680, 1999.2) Oka, F. and

→ 文氏 1) Oka et al, Geolechnique, 49(5), pp.661-680, 1999. 2) Oka, F. and Kimoto, S., Constitutive modeling of geomaterials, Qing Yang et al. eds., Advances and New applications, Springer, pp.215-221,2012. 3) 液状化解析手法LIQCA開発グル ープ,LIQCA2D11・LIQCA3D11(2011年公開版)資料,2011. 4) 杉戸真太ほか,南海トラフ沿いでの巨大地震による強震動予測,岐阜大学平成23年度年 次報告流域圏科学研究センター報告,第10号,pp.45-48,2012.