サイト増幅特性に関する考察—H/Vを同定して地震基盤深さを定めたモデルとの比較

早稲田大学 正会員 〇安井 譲 舞鶴高専 正会員 西川 隼人 福井大学 正会員 小嶋 啓介 早稲田大学 非会員 前田 寿朗 東京大学 非会員 纐纈 一起 金沢大学 正会員 宮島 昌克

1. はじめに

スペクトルインバージョン解析¹⁾では,拘束条件とし て基準点の基盤に対する地表面のサイト増幅特性²⁾を 用いる場合があるが,基準点の地中観測点地盤が地震 基盤相当の層でない場合,地震基盤相当の層に対する 基準点の地中観測点地盤のインピーダンス比係数³⁾に よりサイト増幅特性を補正することが行われる.本報 告は,水平・上下のスペクトルインバージョン解析⁴⁾ で得られた水平および上下のサイト増幅特性を,上記 の補正法の適用性に着目して考察したものである.

2. スペクトルインバージョン解析

スペクトルインバージョン解析は次式によった.

$$A_{xij}(f) = S_{xi}(f) \cdot P_{xij}(f) \cdot G_{x0}(f) \cdot \overline{G}_{xj}(f) \quad \dots (1)$$

$$G_{H0}(f) = \sqrt{\frac{\rho_0 V_{s0}}{\rho_r V_{sr}}} \overline{H}_0(f) \dots (2a)$$

$$G_{V0}(f) = \sqrt{\frac{\rho_0 V_{s0}}{\rho_r V_{pr}}} \overline{V}_0(f) \quad \dots (2b)$$

ここに、 $A_{xij}(f)$:地表面の振幅スペクトル、 $S_{xi}(f)$: i 地震の震源スペクトル、 $P_{xij}(f)$:i 地震のj地点の伝 播経路特性、 $G_{x0}(f)$:基準点のサイト増幅特性、 $\overline{G}_{xj}(f)$:基準点に対するj地点のサイト増幅特性、で あって、x = Hは水平方向成分をx = Vは上下方向成分 を表す.また、 $\overline{H}_0(f)$:基準点の地中観測点地盤の 露頭面に対する地表面の水平伝達関数、 $\overline{V}_0(f)$:同・ 上下伝達関数、 V_{s0} :基盤のS波速度、 ρ_0 :同・密度、 V_{sr} :地中観測点地盤のS波速度、 V_{pr} :同・P波速度、 ρ_r :同・密度、である.なお、インピーダンス比係数 は(2)式の右辺の根号で表された係数であって、(2b)式の 根号内で V_{s0} が用いられていることに注意されたい.

図-1 に対象地震の震央位置(図中×)と対象観測点 (図中,△:K-NET,▲:KiK-net,□:福井大学観測 網⁵⁵ [以後 FU-net と称する])を,それぞれ示した.対 象とした地震は福井県とその周辺で発生した 21 個の地 震であり,対象観測点数は合計 27 地点である.また, 解析に用いた地表面地震観測記録は 341 組である.

基盤は既往の研究⁶⁾を参考に V_{s0} = 3.6km/s,

図-1 対象地震の震央と観測点の分布

表-1 基準点の速度構造と減衰特性

層No.	厚さ (m)	深さ (m)	ρ (t/m ³)	Vs (m/s)	ne,s (m/s)	ni,s (m/s)	Vp (m/s)	ne,p (m/s)	ni,p (m/s)
1	6	6	1.77	313	101	14.2	657	180	44.8
2	6	12	1.93	619	234	12.3	1494	273	87.2
3	26	38	2.03	897	223	30.4	2959	645	105
4	42	80	2.11	1140	187	16.7	3482	862	144
5	120	200	2.23	1548	569	29.4	3800	942	121

 $\rho_0 = 2.75g/cm^3$ の層とした.ここに、P 波速度 V_{p0} は 6.24km/sである.また、基準点はKiK-net の和泉観測 点 (FKIH03)とした.表-1に基準点の速度構造と減衰 特性 ^{7),8)}を示した.

3. サイト増幅特性

基準点のサイト増幅特性は表-1 の諸元と基盤の定数 を用いて(2)式により計算することができ、スペクトル インバージョンで全地点のサイト増幅特性(以後,SAF と称する)を求めることができる.本研究では速度構 造と減衰特性が既知^{7),8)}のKiK-netの7地点を考察の対 象として、SAFを次の2つの計算法によるものと比較 照応する.一つはインピーダンス比係数を用いた(2) 式によるもの(以後、TF-Aと称する)であり、他の一 つは基盤の深さを考慮したモデル(以後、TF-Bと称す る)によるものである.ここに、基盤の深さは地表面 の地震観測記録のH/Vを遺伝的アルゴリズム(GA)で 同定することにより定めた.その際、照応する計算式 として拡散波場理論に基づく以下に示す式⁹⁾を用いた. なお、未知変数は地中観測点位置の地盤の厚さのみと し、探索範囲の上限は 5000m とした.

$$HVR = \sqrt{\frac{2V_{p0}}{V_{s0}}} \frac{TH(f)}{TV(f)} \cdots (3)$$

ここに,(3)式中の*TH*(*f*)と*TV*(*f*)は,それぞれ露頭 基盤に対する地表面の水平と上下の伝達関数である.

キーワード サイト増幅特性,インピーダンス比係数,H/Vスペクトル,スペクトルインバージョン 連絡先 〒204-0003 清瀬市中里1-721-27 TEL042-493-6728

観測地点	厚さ (m)	深さ (m)	Vs (m/s)	Vp (m/s)
FKIH01 (永平寺)	36	100	2219	5432
FKIH02 (織田)	184	230	2114	4920
FKIH03 (和泉)	120	200	1548	3800
FKIH04 (三方)	378	476	2410	5264
FKIH05 (敦賀)	120	200	1047	3697
FKIH06 (高浜)	30	116	1253	2408
FKIH07 (小浜)	349	387	2023	4374

4. 考察

図-2 に水平サイト増幅特性を,図-3 に上下サイト増 幅特性をそれぞれ示した.また,図-4 に H/V スペクト ルの同定の例を示した.参考のため,表-2 に地中観測 点地盤の厚さ,深度,Vs および Vp をまとめて示した.

図-2 および図-3 から, TF-A は FKIH06 を除いて TF-Bによく対応しておりインピーダンス比係数を用い た(2)式の妥当性が確認できる. TF-A と TF-B の SAF と の対応は、水平動については FKIH06 を除きほぼ良好で あると言えるが、上下動については FKIH01, FKIH04, FKIH05 および FKIH06 などの対応がよくない. これら の地点の P 波速度構造⁸⁾を再検討する必要があろう. 図-4のH/Vスペクトルの同定では、(b)のFKIH03を除 いて, (a)の FKIH02 のように TF-B の方が TF-A に比 べて観測値によく近似する傾向を示した. FKIH03 は表 -1にみられるように散乱減衰が30%程度あることから, 地中観測点地盤を基盤に接続する際, 散乱減衰の取り 扱いを注意する必要があることを示唆している. 謝辞 防災科学技術研究所の K-NET と KiK-net の地震観測 記録データを使用しました. ここに記して謝意を表します. 参考文献 (1) 岩田, 入倉: 地震, 第2輯, 第39巻, pp.579-593, 1986., (2) 西川, 池本, 宮島: JSCE 地震工学論文集, Vol.30, pp.118-127, 2009., (3) 赤澤, 入倉, 羽田: 第13回 JEES, GO1-Thu-PM-5, pp.147-154, 2010., (4) 安井, 西川, 小 嶋, 前田, 纐纈, 宮島: JSCE 地震工学論文集, Vol.32, 2013 (投稿中)., (5) 小嶋, 山中:応用地質, 第44巻, 第2号, pp.94-103, 2003., (6) 大場, 野畑, 圓, 鈴木: 第13回 JEES, GO2-Thu-PM-1, pp.193-200, 2010., (7) 安井, 西川:第 13 🗉 JEES, GO45-Fri-AM-2, pp.2299-2305, 2010.,

(8) 安井,西川: AIJ 大会,構造 B-II, pp.131-132, 2012.,
(9) Kawase, H., Sanchez-Sesma, F. J. and Matsushima, S.: *BSSA*, Vol.101, No.5, pp.2001-2014, 201

