埋立地盤における高密度常時微動測定による地盤特性の推定

1. はじめに

常時微動測定を埋立地盤に位置する芝浦工業大学豊 洲キャンパス内で実施した.対象領域は約130×200mで あるが,既存のボーリング資料(12ヶ所)から沖積層 厚は35~45mに変化していることが分かっている.本 研究では高密度微動測定から得られる地盤特性と地下 構造の関係を検討することを目的とする.

2. 常時微動を用いた卓越周期の推定

対象領域を 10m 間隔の格子状にし,全95 地点で高密 度微動測定を行った.微動計には GPL-6A3P(ミツトヨ) を使用し,各地点の測定時間は 660s,サンプリング周 波数は 100Hz とした. 微動波形のスペクトル解析には 4096 個のデータを 50%重なりで 31 区間を抽出してフ ーリエ変換を行いスペクトルを求めた.平滑化にはバ ンド幅 0.25Hz の Parzen ウィンドウを使用している.卓 越周期は水平動のスペクトルを上下動のスペクトルで 除したスペクトル比(以下,微動 H/V スペクトル)から求 めた.図1にクリギング法で作成したコンター図を示 す.同図から卓越周期は 0.76~0.93s の範囲で,北東方 向に向かって卓越周期が長くなる特徴が見られ,ボー リング資料の沖積層厚の変化と調和していることが分 かった.

次に、微動から推定される卓越周期の検証として、 PS 検層を実施した図1中の地震計112地点付近での微 動 H/V スペクトルと PS 検層データ(表1)に基づく重複 反射理論の増幅特性を図2に示す.両者の形状は比較 的似ているが、微動の卓越周期は若干短いことが分か る.また、図3にはボーリング地点での微動 H/V スペ クトルから推定した卓越周期と同地点の標準貫入試験 から得られたN値に基づき、重複反射理論から推定し た卓越周期の関係を示す.相関係数は、0.81と比較的 高い値を示しているが、PS 検層と同様に、微動から推 定された卓越周期は、重複反射理論から推定された卓 越周期より 0.1s 程度短い傾向が見られた.

3. 地震記録を用いた卓越周期の推定

芝浦工業大学	学生員	○宮田涼平
芝浦工業大学	正会員	紺野克昭
宇都宮市役所		長嶋祐亮
飛島建設	正会員	池田隆明

図1の地震計 112(GL-0m) 地点と地震計 119(GL-40m) 地点には強震計 CV-374(東京測振)が設置されている. 表2の地震記録を用いて地震動のスペクトルと伝達関 数(112/119)の算出を行った.図4,5に地震計 112 のCH1, CH2の地震動スペクトルを示す.図6,7に伝 達関数(112/119)を示す.CH1の伝達関数はCH2に 比べ,若干ばらつきは大きい傾向が見られるが,両方 向とも,1次モードは周期約0.8s,2次モードは約0.3s であることが分かる.1次モードについては,微動 H/V スペクトルの卓越周期とほぼ一致していること,CH2 の伝達関数の値は CH2 に比べて大きい傾向があること が分かる.

4. 各微動測定点と地震計 112 点のスペクトル比

地震計 112 脇に微動計を並べて微動の同時測定を行った. 図8に同一方向のスペクトル比(微動計/地震計) を示す. なお, 地震計 112 は連続観測を行っている. 同図から,水平方向に関しては,周期0.1~0.8sの範囲で 両者の特性は概ね同一であることが分かった. そこで 周期0.1~0.8sまで0.1s刻みで,高密度微動測定記録と 地震計 112 の同時刻の微動記録に対するスペクトル比 を求めた. なお,このスペクトル比の物理的意味は明 確ではないが,地震計 112 に対する揺れやすさの傾向 を表していると考えている. 図9,10に CH1, CH2 の 周期0.8sにおけるスペクトル比(微動計/地震計)の値 のコンター図を示す.値の範囲は CH1 方向で0.74~0.94, CH2 方向で0.79~1.59 と CH2 の方が大きい傾向が見ら れた.

5.まとめ

高密度微動測定から推定された卓越周期は地下構造 と調和していることが分かった.次に,これらの微動 記録と地震計 112 で得られた微動記録から,スペクト ル比の分布を求めた.振動方向によってこれらの分布 は異なり,不整形地盤の影響とも考えられる.今後, 数値解析を通して,このスペクトル比の分布と不整形 地盤の関係を検討していく予定である.

キーワード 埋立地盤,常時微動測定,地震観測,地盤特性,H/Vスペクトル

連 絡 先 〒135-8548 江東区豊洲 3-7-5, Tel 03-5859-8357, konno@sic.shibaura-it.ac.jp

表1 PS 検層結果(地震計 112)

Vs(m/s) 120

180

190 220

170

140

160 110

 $\frac{170}{250}$

410

160

480

(地震計 112) 表 2 解析に使用した地震の諸元 ¹⁾													
層厚(m)	地震 番号	震 ・号 地震発生時刻 深さ (km)	深さ	震央 距離 (km)	MJ	震央地域名	最大加速度 (gal)						
1.00							地震計 112(GL-Om)			地震計 119(GL-40m)			
2.00							CH1	CH2	CH3	CH1	CH2	CH3	
3.40	EQ01	2012/11/16/17:25	30	134	5.5	千葉県東方沖	2.4	2.1	1.5	1.0	1.0	0.6	
1.90	EQ02	2012/11/24/17:59	72	20	4.8	東京湾	27.1	18.5	16.0	14.9	16.5	4.0	
3.70	EQ03	2012/12/07/05:32	67	34	4.6	千葉県北西部	3.7	2.7	2.8	2.4	1.8	1.1	
5.00	EQ04	2012/12/07/17:18	46	469	7.4	三陸沖	29.2	26.4	17.1	14.2	11.3	6.2	
9.00	EQ05	2013/01/22/04:46	16	106	5.1	千葉県東方沖	5.2	6.6	4.6	2.9	3.3	1.5	
3.00	EQ06	2013/01/28/03:41	74	122	4.8	茨城県北部	4.1	5.2	3.6	2.4	3.5	1.1	
3.00	EQ07	2013/02/01/23:06	71	22	4.4	東京湾	5.4	4.1	3.6	2.9	3.1	1.0	
2.50	EQ08	2013/02/02/23:17	108	835	6.5	十勝地方南部	3.8	3.3	1.9	1.2	1.5	0.7	
1.65	EQ09	2013/02/19/21:27	37	132	5.6	千葉県東方沖	2.8	3.1	2.0	1.1	0.8	1.0	
0.95	EQ10	2013/02/25/16:23	3	139	6.3	栃木県北部	4.0	3.7	2.6	1.7	1.8	2.2	
2.90	EQ11	2013/03/08/07:19	32	16	3.5	東京都 23 区	3.8	4.3	2.5	3.2	2.1	0.8	

図1 微動測定地点と微動 H/V スペクトル から推定した卓越周期のコンター図

100

図 2 地震計 112 付近の微動 H/V スペクトルとPS検層データに基づ く増幅特性

図3 微動H/Vスペクトルと重複 反射理論から推定した卓越周期 の関係

図4 表1の地震における地 震計 112 の地震動スペクトル (CH1 方向)

図5 表1の地震における地 震計 112 の地震動スペクトル (CH2 方向)

図6 地震計 112 と 119

の地震動スペクトル比

(CH1 方向)

図7 地震計112と119 の地震動スペクトル比 (CH2 方向)

謝辞:本研究の一部は、平成 24 年度 文部科学省科学研究費補助金 基盤研究(C) (課題番号:24560595)(代表:池田隆明)および 芝浦工業大学のプロジェクト研究の助成を受けています.記して感謝申し上げます. 参考文献: 1)気象庁: 震度データベース検索 http//www.seisvol.kishou.go.jp/eq/shindo_db/shindo_index.html

-226

層番号

2

3

45

6

7

8

10 11

12

13