粒子法による橋桁に作用する津波外力評価の精度検証

九州大学大学院	学生会員	\bigcirc	田邊	将一
九州大学大学院	正会員		浅井	光輝
九州大学大学院	正会員		園田	佳巨

1. はじめに

東日本大震災における構造物の津波被害を受け,津 波外力の定量的な評価手法が求められている.本研究 では,橋桁に作用する流体力評価に焦点をあて,小型 模型実験結果と数値解析結果とを比較検証し,その後, 現実的なサイズ・形状の橋桁に作用する流体力の大き さを見積もる方針とした.解析手法は,粒子法の一つ である SPH (Smoothed Particle Hydrodynamics)法を採用 し,境界条件の取り扱い方法について新たな提案した 後に,その精度と有用性を確認した.

2. 解析手法

SPH 法とは、物体を有限個の粒子に離散化し、対象と する粒子の物理量を影響半径内に存在する近傍粒子に 重み関数をかけて、一種の重み付き平均として近似す る手法である.本研究では特に、非圧縮性流体解析用 に開発された Incompressible SPH (ISPH) 法の改良案で ある非圧縮条件緩和型 ISPH 法^[1]を用いているが、詳細 は文献を参照されたい.

3. 境界処理法

本研究では図-1に示す仮想マーカー(以下マーカーと称す)を用いて,流速に関するすべり条件(あるいは非す べり条件)と圧力のノイマン条件を満足する境界処理方 法を提案し,その精度を検証した.以下に提案手法の 手順を簡単に述べる.まず,マーカーは壁境界面を挟 み壁境界粒子と対称な位置に配置する.次に,マーカ ー上での物理量(流速と圧力)を SPH 法の考え方から内 挿近似する.ここで,マーカーは SPH 法の近似に直接 関与せず,壁粒子に適切な物理量を与えるための計測 点として使う.

すべり条件を満足させるには、壁粒子はマーカー上 での流速 ν_{ν} と鏡映対称な流速となればよいので、以下 の式より与えられる.

キーワード: Tunami, SPH, Fluid Force

連絡先:〒819-0395 福岡県福岡市西区元岡 744 番 九州大学 伊都キャンパス W2 号館 11 階 1102 号室 Tel/Fax 092-802-3370

(1)

ここで*M* はミラーリング操作を与えるための2階のテ ンソルであり、壁の内向き法線ベクトル $n = (n_1, n_2, n_3)^T$ を用いて与えられる.

非すべり条件を満足させるためには、マーカー上での流速 ν_ν と点対称な流速となればよいので、点対称テンソルル *R* を用いて次の変換式より壁粒子に速度を与える.

$$\boldsymbol{v}_{w}^{'} = \boldsymbol{R}\boldsymbol{v}_{v}$$
 , $\boldsymbol{R}_{ij} = -\delta_{ij}$

圧力ノイマン条件まで同時に満足するには、マーカー 上での値を参照し、壁粒子に適切な圧力を与える必要 がある、壁粒子上では速度の法線方向はゼロとなるの で、壁面上での流速を v_{w0} とすると式(2)を満たさなけれ ばならない.

$$\boldsymbol{v}_{w0} \cdot \boldsymbol{n} = 0 \tag{2}$$

それから,式(3)を参照すれば,この条件が成立するためには式(4)の非一様的圧力ノイマン条件を満足しなければならない.

$$\frac{D\boldsymbol{u}}{Dt} = -\frac{1}{\rho^0} \nabla P + \underbrace{v \nabla^2 \boldsymbol{u} + \boldsymbol{g}}_{f}$$
(3)

$$\partial p / \partial \boldsymbol{n} = \rho \, \boldsymbol{f} \cdot \boldsymbol{n} \tag{4}$$

なお、SPH 法において非一様的圧力ノイマン条件を満 たすには、マーカー上での圧力 p_v 及び外力 f_v を用い て式(5)により評価する圧力 p'_w を与えればよい.なお、

Fx(N)

d は境界面から対象とする壁粒子までの距離を、 ρ は 水の密度を表し、 $\langle \cdot \rangle$ は SPH 法による近似値を示す.

$$p'_{w} = \langle p_{v} \rangle + 2d\rho \langle f_{v} \rangle \cdot \boldsymbol{n}$$
(5)

4. 解析内容

(1)解析例

今回橋桁に作用する流体力の評価例題として,中尾 ら回によって行われた実験を挙げた.この実験では,貯 水部に溜めた水を前面に取り付けたゲートを開くこと で放水し,津波を模擬した波を橋梁模型に衝突させる ものである.その際,桁に作用する流体力を計測した. 解析モデルを図-2 に,橋桁模型の詳細を図-3 に示す.

図-3 橋桁模型の詳細

解析には九州大学のスパコン, FUJITSU PRIMEHPC FX10を用いた. 解析条件の詳細は表-1に示す.

表-1 解析条件

粒子間隔	総粒子数	時間増分	実時間	解析時間(384core)
0.5cm	約 800 万	0.001sec	15sec	約 140 時間

(2)解析結果

図-4 に長方形・逆台形断面の解析モデルに,境界条件としてすべり条件を与えた場合の水平方向力の結果 を,図-5 に逆台形断面の鉛直方向力の結果をそれぞれ 示す.両断面ともグラフの挙動は実験値とおおよそ一 致していることが分かるが,水平及び,鉛直方向圧力 の最大値が実験値よりも若干低くなっている.これは, 実験の波が段波状になっているのに対して,すべり境 界を与えた解析の場合,波の先端形状が実験よりも 鋭角になり,桁に衝突する面積が減少したことが要因 として考えられる.

図-5 鉛直方向力

5. 結論

津波力の評価を想定した小型模型実験結果との比較 検証より,数値解析の精度を確認し,十分に実用的な 範囲で流体力を予測可能であることを確認した.現在, 実際の寸法を用いた橋桁モデルで,流体力評価を実施 中である.現時点では,橋桁が固定された条件に限定 して流体力の精度検証のみを実施しているが,今後, 橋桁の移動まで評価可能な計算ツールへと発展させて いく予定である.

謝辞

本研究の一部は、日本橋梁建設協会より研究助成を受 けました。また、立命館大学・伊津野教授、土木研究 所・中尾尚史様には実験のデータ等を提供していただ きました.ここに記して感謝いたします。

参考文献

[1]M. Asai, AM. Aly, Y. Sonoda and Y. Sakai, A stabilized incompressible SPH method by relaxing the density invariance condition, Int.l J.for Applied Mathematics, Vol.2012(2012), Article ID 139583
[2]中尾尚史,糸永航,松田良平ら:基本的な断面形状の橋梁 に作用する津波外力に関する実験的研究,土木学会論文集

Vol.67,No.2(応用力学論文集 Vol.14), I_481-I_491,2011.