三次元動的解析による東北地方太平洋沖地震時のアーチダムの耐震性の検討

弘前大学	フェロー会員	有賀 義明
弘前大学	学生会員	早坂 友宏
弘前大学	非会員	川上 和貴
宮城大学	正会員	上島 照幸
日本大学	正会員	仲村 成貴
日本大学	正会員	塩尻 弘雄

1. まえがき

大倉ダム(仙台環境開発大倉ダム)は,1961年に建 設されたダブルアーチダムであり,宮城県仙台市に位置 している.2011年東北地方太平洋沖地震の際には,ダ ムの天端やスラストブロック内の監査廊等で地震動が観 測された.ここでは,複雑な形状をした複合構造型のダ ムの耐震性の照査方法の検討を目的として,スラストブ ロック内の監査廊で観測された地震動を活用して三次元 動的解析を行い,東北地方太平洋沖地震におけるダブル アーチダムの耐震性について考察した.

2. 三次元動的解析

2.1 解析対象

解析対象は,図-1 に示したダブルアーチダムであり, 右岸側アーチダム(以下,右岸ダム)の堤高 42m,左岸 側アーチダム(以下,左岸ダム)の堤高 82m,全体の堤 頂長 323m,全体の堤体積 22.6万m³である.左岸ダムの 天端には,放流設備があり,4門の鋼製ローラーゲート (高さ7.55m,幅8.86m)が設置されている.

2.2 三次元動的解析モデル

解析モデルを図-2 に示す.基礎岩盤は,幅 450m,奥 行 250m,高さ 142m の領域をモデル化した。ダム,基礎 地盤ともにソリッド要素を用いてモデル化した.放流施 設の鋼製ゲートは,ダムの地震時挙動に及ぼす影響が小 さいと考えてモデル化を省略した.貯水については,地 震発生時が渇水期にあたり,ダム天端の標高 EL.272.00 に対して貯水位が EL.253.11m と低かったことから,今 回の解析ではモデル化を省いた.なお,基礎地盤の側方 境界は粘性境界,下方境界は剛基盤とした.

2.3 解析用物性值

解析に用いた動的物性値を表-1 に示す.ダムとスラ ストブロックの動的せん断剛性の値は,東北地方太平洋 沖地震の際に左岸ダムの天端で観測された地震動から評 価されたダムの固有周波数が再現されるように同定した 結果である.密度,ポアソン比,減衰定数は,これまで の解析評価事例を踏まえ一般的な数値を設定した.

図-1 解析対象ダムの形状と地震計の配置

節点数:33,100 要素数:27,268

図-2 三次元動的解析モデル

項目	動わせん断剛性 (N/mm ²)	密度 (t/m ³)	ポアソン 比	減衰 定数
右岸ダム	(1 111111)	(0111)	20	~~~~
スラストブロック	6000	2.40	0.20	0.05
左岸ダム				
基礎地盤	4500	2.60	0.25	0.05

表-1 解析に用いた動的物性値

キーワード:ダブルアーチダム,東北地方太平洋沖地震,三次元動的解析,耐震性能 連絡先:〒036-8561 弘前市文京町3, 弘前大学大学院理工学研究科地球環境学コース Tel・Fax 0172-39-3608

2.4 入力地震動

3月11日の本震の際にスラストブロック内の監査廊 で観測された地震動を入力地震動として使用した.最大 加速度は88.35gal である。解析には,図-3に示した時 刻歴の20.00秒から59.99秒までの40秒間を使用した. 25解析結果

(1)加速度応答

上下流方向の最大加速度分布を図-4 示す.また,図-5 に示した代表出力位置の最大加速度の値を表-2 に示す. 加速度応答に関しては,左岸ダムの谷部最下部(位置 11)で125.11gal,左岸ダムの天端(位置 8)で673.20gal, 右岸ダムの天端(位置 2)で751.88gal,スラストブロッ クの天端では位置4で423.63gal,位置6で437.83galと なった.

(2) 地震時引張応力

図-6 に地震時の最大引張応力の分布を示す.最大引 張応力の分布は,左右岸のアバットメントのエリアに比 して,スラストブロックとダムの接続部のエリアで大き い傾向が見られる.地震時引張応力の最大値は,左岸ダ ム天端の放流施設周辺の天端橋梁部で出現しているが, その値は 2.937N/m²であった.ダム堤体での最大引張応 力は,右岸ダム天端中央(位置 2)で現われ,その値は 1.220N/m²であった.

2.6 ダムの地震時健全性について

ダムコンクリートは引張応力に対して弱いため,地震 時健全性を評価する際には引張応力の値が重要な判断指 標になる.一般的に想定されるダムコンクリートの動的 引張強度3~5N/m²に対して,今回の解析で得られた地 震時引張応力の最大値は,ダム堤体では1.3N/m²程度で あった.この結果では,東北地方太平洋沖地震の際に評 価対象ダムでは損傷は生じなかったと考察される.

3. あとがき

形状が異なる複数の構造体が連結された,複合構造型 のダムの耐震性能照査においては,個々の構造体の地震 時応答のみならず,構造体間の相互の影響を定量的に評 価し考慮することが必要である.今後の課題としては, 入力地震動の特性と作用方向,堤体および基礎地盤の非 線形効果,貯水,堤体のジョイント等の影響の検討があ ると考えている.

謝辞

本研究の実施に際しては,(社)東北建設協会・技術開発支 援制度より支援を受けていること,宮城県仙台地方ダム総合事 務所からフィールドの提供を受けていること,仙台市大倉川土 地改良区管理下にある建物の一角を借用して観測機器を設置さ せていただいていることを記して,感謝の意を表します

図-5 最大加速度の代表出力位置

表-2	代表位置における最大加速度
18 4	

出力位置		最大加速度	
			(gal)
1		右岸アバットメント	194.99
2	右岸ダム	天端中央	751.88
3		底部中央	202.45
4		右岸天端接続部	423.63
5	スラスト	右岸底部接続部	264.05
6	フロック	左岸天端接続部	437.83
7		左岸底部接続部	270.05
8		天端(スラストブロック側)	673.20
9		底部(スラストブロック側)	262.18
10	<u></u>	洪水吐下部	585.57
11	左岸ダム	谷部最下部	125.11
12		天端(アバットメント側)	437.56
13		底部(アバットメント側)	156.52
14		左岸アバットメント	204.78

図-6 地震時の最大引張応力の分布

参考文献

1) 上島照幸, 金澤健司, 村上弘太, 仲村成貴, 塩尻弘雄, 有 賀義明:常時微動・地震動の長期継続観測による高経年化した アーチダムの振動特性同定と 2011 年東北地方太平洋沖地震時 のダムの振動挙動, 土木学会論文集 A1(構造・地震工学), Vol.68,No.4(地震工学論文集第 31-b 巻), _186- _194,2012