東北地方太平洋沖地震における新幹線トンネルの被害と復旧

東日本旅客鉄道㈱	正会員	○松沼	政明
東日本旅客鉄道㈱	正会員	齋藤	貴

1. はじめに

2011年3月に発生した Mw9.0 の東北地方太平洋沖地震に おいて,一部の新幹線トンネルが被害を受けた.被災トンネ ルのうち特に被害が大きかったのは福島トンネルと志賀ト ンネルである(図 1).本稿では,これら2トンネルの被災概 要および復旧の概要,断面計測による変位の推移について述 べる.

2. 福島トンネル

福島トンネルは、東北新幹線郡山〜福島間に位置する延長 11,705mのトンネルである.被害を生じた区間の地質は泥岩 と凝灰岩の互層となっている(図 2).掘削工法は、上部半断 面先進レール工法、底設導坑先進上部半断面工法で施工され、 支保工は H175, ctc1.3m,覆工厚は 50cm,路盤構造は、り ょう盤コンクリートであり(図 3)、1976年4月にしゅん工し た.なお、震央からの距離は 153km である.

福島トンネルの被害は,延長約 160m の区間において,中央 通路部の側壁傾斜,底板損傷等の被害が生じ,さらに中央通 路側のレールが側壁側よりも相対的に高くなる水準変位が 大きく発生した.図4に中央通路部の変状写真を示す.当該 区間の軌道の高低(レベル測量による相対高さ)データを図 5 に示す.図5中,横軸がキロ程,縦軸がトンネル内に仮の基 準点を設定した場合の軌道の相対高さを示す.下り線の軌道 検測の結果からは,水準変位量(左右レールの高低差)は最大 で 67mm であった.これは,中央通路側が側壁側に比べ,相 づいの120 数的に高くなっていることを示している.

3. 志賀トンネル

志賀トンネルは、東北新幹線白石蔵王〜仙台間に位置する 延長 3,502m のトンネルである. 被害を生じた区間の地質は、 泥岩や頁岩、凝灰岩、角礫凝灰岩などが複雑に組み合わさっ た地質、地層構造となっている(図 6). 掘削工法は、側壁導 坑先進上部半断面工法のほか、2段サイロットやスプリング サイロット工法が用いられ、支保工は H200、ctc0.9、1.0m、 覆工厚は、70、90cm、インバート構造であり(図 7)、1976 年 3月にしゅん工した¹⁾. なお、震央からの距離は 117km であ る.

キーワード 東北地方太平洋沖地震,新幹線,トンネル 連絡先 〒151-8578 東京都渋谷区代々木 2-2-2 東日本旅客鉄道㈱ 構造技術センター TEL03-5334-1288 志賀トンネルの被害は, 延長約 700m の区間にお いて福島トンネルと同様に路盤部の隆起に伴う中 央通路変状および軌道変状であった. 図8に志賀ト ンネルの中央通路部の変状写真を示す. 図9に志賀 トンネルの主要な変状区間の上下線軌道の高低デ ータを示す. 図9の横軸が線路方向のキロ程(m), 縦軸が, 左レール, 右レールそれぞれの高さ(mm) を示している. なお, 高さはトンネル内に仮の基準 となる点を設けて相対的な高さを測定したもので ある. 図9より, 志賀トンネルの軌道変位は, 3箇 所にピークを持った軌道の隆起であることがわか る. さらに, 3箇所とも軌道の中央通路側のレール が側壁側のレールに対して隆起傾向にあった.

4. 復旧概要

復旧方針として,路盤のはつりおよびスラブ据え なおし,ならびにりょう盤コンクリート下の地山等 への空隙および開口部へのセメントミルク等の充 填を主な工種とした応急復旧により,早期の運転再 開を行い,運転再開後に路盤部および側壁部へのロ ックボルト打設(図 10, 11)を行う本復旧とに分けて 実施した.

5. 断面計測

被害を受けたトンネルの応急復旧による運転再 開にあたり,路盤部及び内空変位の計測監視を継続 実施することとした.志賀トンネルにおける変位測 定断面の例を図 12 に,ロックボルト打設前後の内 空変位計測の例を図 13 に示す.図 13 の縦軸が内空 変位,横軸が日付である.図 13 に示す例では,内 空幅が縮小傾向にあったものが,側壁および路盤部 へのロックボルトの打設により,内空変位の収束が 確認された.

6. まとめ

2011年3月の東北地方太平洋沖地震において, 一部の新幹線トンネルが被害を受けた.当該地震に おけるトンネルの特徴的な被害は,トンネルの一部 区間における路盤部の隆起であった.復旧方法とし て,早期の運転再開を図るために,路盤部の空隙充 填,軌道スラブの据えなおしによる応急復旧を行い, 運転再開後に路盤および側壁下部へのロックボル ト打設による本復旧を実施した.

参考文献

1) 田中康雄:軟弱地質の下半掘削,トンネルと地下,1975.12

図13 内空変位の推移(図9におけるB区間の例)

-192-